genesis-3d_engine/Engine/ExtIncludes/physX3/windows/foundation/PxVec4.h

321 lines
7.9 KiB
C
Raw Normal View History

// This code contains NVIDIA Confidential Information and is disclosed to you
// under a form of NVIDIA software license agreement provided separately to you.
//
// Notice
// NVIDIA Corporation and its licensors retain all intellectual property and
// proprietary rights in and to this software and related documentation and
// any modifications thereto. Any use, reproduction, disclosure, or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA Corporation is strictly prohibited.
//
// ALL NVIDIA DESIGN SPECIFICATIONS, CODE ARE PROVIDED "AS IS.". NVIDIA MAKES
// NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
// THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
// MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
//
// Information and code furnished is believed to be accurate and reliable.
// However, NVIDIA Corporation assumes no responsibility for the consequences of use of such
// information or for any infringement of patents or other rights of third parties that may
// result from its use. No license is granted by implication or otherwise under any patent
// or patent rights of NVIDIA Corporation. Details are subject to change without notice.
// This code supersedes and replaces all information previously supplied.
// NVIDIA Corporation products are not authorized for use as critical
// components in life support devices or systems without express written approval of
// NVIDIA Corporation.
//
// Copyright (c) 2008-2013 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_FOUNDATION_PX_VEC4_H
#define PX_FOUNDATION_PX_VEC4_H
/** \addtogroup foundation
@{
*/
#include "foundation/PxMath.h"
#include "foundation/PxVec3.h"
#include "foundation/PxAssert.h"
/**
\brief 4 Element vector class.
This is a 4-dimensional vector class with public data members.
*/
#ifndef PX_DOXYGEN
namespace physx
{
#endif
class PxVec4
{
public:
/**
\brief default constructor leaves data uninitialized.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4() {}
/**
\brief Assigns scalar parameter to all elements.
Useful to initialize to zero or one.
\param[in] a Value to assign to elements.
*/
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(PxReal a): x(a), y(a), z(a), w(a) {}
/**
\brief Initializes from 3 scalar parameters.
\param[in] nx Value to initialize X component.
\param[in] ny Value to initialize Y component.
\param[in] nz Value to initialize Z component.
\param[in] nw Value to initialize W component.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(PxReal nx, PxReal ny, PxReal nz, PxReal nw): x(nx), y(ny), z(nz), w(nw) {}
/**
\brief Initializes from 3 scalar parameters.
\param[in] v Value to initialize the X, Y, and Z components.
\param[in] nw Value to initialize W component.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec3& v, PxReal nw): x(v.x), y(v.y), z(v.z), w(nw) {}
/**
\brief Initializes from an array of scalar parameters.
\param[in] v Value to initialize with.
*/
explicit PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxReal v[]): x(v[0]), y(v[1]), z(v[2]), w(v[3]) {}
/**
\brief Copy ctor.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4(const PxVec4& v): x(v.x), y(v.y), z(v.z), w(v.w) {}
//Operators
/**
\brief Assignment operator
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator=(const PxVec4& p) { x = p.x; y = p.y; z = p.z; w = p.w; return *this; }
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_INLINE PxReal& operator[](int index) { PX_ASSERT(index>=0 && index<=3); return (&x)[index]; }
/**
\brief element access
*/
PX_CUDA_CALLABLE PX_INLINE const PxReal& operator[](int index) const { PX_ASSERT(index>=0 && index<=3); return (&x)[index]; }
/**
\brief returns true if the two vectors are exactly equal.
*/
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxVec4&v) const { return x == v.x && y == v.y && z == v.z && w == v.w; }
/**
\brief returns true if the two vectors are not exactly equal.
*/
PX_CUDA_CALLABLE PX_INLINE bool operator!=(const PxVec4&v) const { return x != v.x || y != v.y || z != v.z || w!= v.w; }
/**
\brief tests for exact zero vector
*/
PX_CUDA_CALLABLE PX_INLINE bool isZero() const { return x==0 && y==0 && z == 0 && w == 0; }
/**
\brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.)
*/
PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
{
return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
}
/**
\brief is normalized - used by API parameter validation
*/
PX_CUDA_CALLABLE PX_INLINE bool isNormalized() const
{
const float unitTolerance = PxReal(1e-4);
return isFinite() && PxAbs(magnitude()-1)<unitTolerance;
}
/**
\brief returns the squared magnitude
Avoids calling PxSqrt()!
*/
PX_CUDA_CALLABLE PX_INLINE PxReal magnitudeSquared() const { return x * x + y * y + z * z + w * w; }
/**
\brief returns the magnitude
*/
PX_CUDA_CALLABLE PX_INLINE PxReal magnitude() const { return PxSqrt(magnitudeSquared()); }
/**
\brief negation
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator -() const
{
return PxVec4(-x, -y, -z, -w);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator +(const PxVec4& v) const { return PxVec4(x + v.x, y + v.y, z + v.z, w + v.w); }
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator -(const PxVec4& v) const { return PxVec4(x - v.x, y - v.y, z - v.z, w - v.w); }
/**
\brief scalar post-multiplication
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator *(PxReal f) const { return PxVec4(x * f, y * f, z * f, w * f); }
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 operator /(PxReal f) const
{
f = PxReal(1) / f;
return PxVec4(x * f, y * f, z * f, w * f);
}
/**
\brief vector addition
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator +=(const PxVec4& v)
{
x += v.x;
y += v.y;
z += v.z;
w += v.w;
return *this;
}
/**
\brief vector difference
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator -=(const PxVec4& v)
{
x -= v.x;
y -= v.y;
z -= v.z;
w -= v.w;
return *this;
}
/**
\brief scalar multiplication
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator *=(PxReal f)
{
x *= f;
y *= f;
z *= f;
w *= f;
return *this;
}
/**
\brief scalar division
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4& operator /=(PxReal f)
{
f = 1.0f/f;
x *= f;
y *= f;
z *= f;
w *= f;
return *this;
}
/**
\brief returns the scalar product of this and other.
*/
PX_CUDA_CALLABLE PX_INLINE PxReal dot(const PxVec4& v) const
{
return x * v.x + y * v.y + z * v.z + w * v.w;
}
/** return a unit vector */
PX_CUDA_CALLABLE PX_INLINE PxVec4 getNormalized() const
{
PxReal m = magnitudeSquared();
return m>0 ? *this * PxRecipSqrt(m) : PxVec4(0,0,0,0);
}
/**
\brief normalizes the vector in place
*/
PX_CUDA_CALLABLE PX_INLINE PxReal normalize()
{
PxReal m = magnitude();
if (m>0)
*this /= m;
return m;
}
/**
\brief a[i] * b[i], for all i.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 multiply(const PxVec4& a) const
{
return PxVec4(x*a.x, y*a.y, z*a.z, w*a.w);
}
/**
\brief element-wise minimum
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 minimum(const PxVec4& v) const
{
return PxVec4(PxMin(x, v.x), PxMin(y,v.y), PxMin(z,v.z), PxMin(w,v.w));
}
/**
\brief element-wise maximum
*/
PX_CUDA_CALLABLE PX_INLINE PxVec4 maximum(const PxVec4& v) const
{
return PxVec4(PxMax(x, v.x), PxMax(y,v.y), PxMax(z,v.z), PxMax(w,v.w));
}
PX_CUDA_CALLABLE PX_INLINE PxVec3 getXYZ() const
{
return PxVec3(x,y,z);
}
/**
\brief set vector elements to zero
*/
PX_CUDA_CALLABLE PX_INLINE void setZero() { x = y = z = w = PxReal(0); }
PxReal x,y,z,w;
};
PX_CUDA_CALLABLE static PX_INLINE PxVec4 operator *(PxReal f, const PxVec4& v)
{
return PxVec4(f * v.x, f * v.y, f * v.z, f * v.w);
}
#ifndef PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif // PX_FOUNDATION_PX_VEC4_H