genesis-3d_engine/Engine/foundation/math/float3.h

780 lines
20 KiB
C
Raw Permalink Normal View History

/****************************************************************************
Copyright (c) 2007,RadonLabs GmbH
Copyright (c) 2011-2013,WebJet Business Division,CYOU
http://www.genesis-3d.com.cn
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#ifndef __float3_H__
#define __float3_H__
#include "core/types.h"
#include "math/scalar.h"
#include "math/matrix44.h"
#include "math/float4.h"
namespace Math
{
class float3
{
public:
//static int testFlag;
/// default constructor, NOTE: does NOT setup components!
float3();
/// construct from values
float3(scalar x, scalar y, scalar z);
explicit float3(const scalar* v);
explicit float3(scalar s);
/// copy constructor
float3(const float3& rhs);
/// assignment operator
float3& operator = (const float3& rhs);
float3& operator = (scalar s);
/// Pointer accessor for direct copying
scalar* ptr();
/// Pointer accessor for direct copying
const scalar* ptr() const;
scalar operator [] ( const IndexT i ) const;
scalar& operator [] ( const IndexT i );
/// equality operator
bool operator == (const float3& rhs) const;
/// inequality operator
bool operator != (const float3& rhs) const;
/// Returns true if the float3's scalar components are all greater that the ones of the float3 it is compared against
bool operator < ( const float3& rhs ) const;
/// Returns true if the vector's scalar components are all smaller that the ones of the vector it is compared against
bool operator > ( const float3& rhs ) const;
/// operator +
const float3& operator + () const;
/// flip sign
float3 operator - () const;
// arithmetic operations
float3 operator + (const float3& rhs) const;
float3 operator - (const float3& rhs) const;
float3 operator * (scalar fScalar) const;
float3 operator * (const float3& rhs) const;
float3 operator / (scalar fScalar) const;
float3 operator / ( const float3& rhs) const;
// overloaded operators to help float3
friend float3 operator * (scalar fScalar, const float3& rhs);
friend float3 operator / (scalar fScalar, const float3& rhs);
friend float3 operator + (const float3& lhs, scalar rhs);
friend float3 operator + (scalar lhs, const float3& rhs);
friend float3 operator - (const float3& lhs, scalar rhs);
friend float3 operator - (scalar lhs, const float3& rhs);
// arithmetic updates
float3& operator+=(const float3& rhs);
float3& operator+=(scalar s);
float3& operator-=(const float3& rhs);
float3& operator-=(scalar s);
float3& operator*=(const float3& rhs);
float3& operator*=(scalar s);
float3& operator/=(const float3& rhs);
float3& operator/=(scalar fScalar);
/// set content
void set(scalar x, scalar y, scalar z);
/// set content
void setFromFloat4(const float4& f4);
/// read/write access to x component
scalar& x();
/// read/write access to y component
scalar& y();
/// read/write access to z component
scalar& z();
/// read-only access to x component
scalar x() const;
/// read-only access to y component
scalar y() const;
/// read-only access to z component
scalar z() const;
/// return length of vector
scalar length() const;
/// return squared length of vector
scalar lengthsq() const;
/// return the distance to another vector
scalar distance(const float3& rhs) const;
/// return the distance to another vector
scalar distance(const plane& rhs) const;
/// return the squared distance to another vector
scalar distancesq(const float3& rhs) const;
/// Calculates the dot (scalar) product of this float3 with another.
scalar dotProduct(const float3& vec) const;
/// Calculates the absolute dot (scalar) product of this float3 with another.
scalar absDotProduct(const float3& vec) const;
/// Calculates the cross-product of 2 float3
float3 crossProduct( const float3& rkVector ) const;
/// Normalises the vector.
scalar normalise();
/// Returns a float3 at a point half way between this and the passed in float3
float3 midPoint( const float3& vec ) const;
/// return compononent-wise absolute
float3 abs() const;
/// return true if any components are non-zero
bool any() const;
/// return true if all components are non-zero
bool all() const;
/// Check whether this vector contains valid values
bool isNaN() const;
/// transform float3 as point
float3 transformPoint(const Math::matrix44& m) const;
/// tansform float3 as vector
float3 transformVector(const Math::matrix44& m) const;
/// Generates a vector perpendicular to this vector (eg an 'up' vector).
float3 perpendicular() const;
/// return vector made up of largest components of 2 vectors
static float3 maximize(const float3& v0, const float3& v1);
/// return vector made up of smallest components of 2 vectors
static float3 minimize(const float3& v0, const float3& v1);
/// return normalized version of vector
static float3 normalize(const float3& v);
/// return if is normalized
static bool isNormalize(const float3& v);
/// set less-then components to non-zero
static float3 lt(const float3& v0, const float3& v1);
/// set less-or-equal components to non-zero
static float3 le(const float3& v0, const float3& v1);
/// set greater-then components to non-zero
static float3 gt(const float3& v0, const float3& v1);
/// set greater-or-equal components to non-zero
static float3 ge(const float3& v0, const float3& v1);
/// compare two float3 with tolerance
static bool compare(const float3& v0, const float3& v1, const scalar& tol);
/// calculate a face normal without normalize, including the w component which is the offset from the origin.
static float4 calculateFaceNormalWithoutNormalize(const float3& v1, const float3& v2, const float3& v3);
/// Calculate a face normal without normalize, no w-information.
static float3 calculateBasicFaceNormalWithoutNormalize(const float3& v1, const float3& v2, const float3& v3);
///Hermite vector
static void hermite(Math::float3 *pOut,const Math::float3 *pV1,const Math::float3 *pT1,const Math::float3 *pV2,const Math::float3 *pT2,Math::scalar s);
/// convert to anything
template<typename T> T as() const;
static const float epsilon;
protected:
scalar X;
scalar Y;
scalar Z;
};
//------------------------------------------------------------------------
inline
float3::float3()
:X( 0.f ),Y(0.f),Z(0.f)
{
}
//------------------------------------------------------------------------
inline
float3::float3(scalar x, scalar y, scalar z)
: X(x), Y(y), Z(z)
{
}
//------------------------------------------------------------------------
inline
float3::float3(const scalar* v)
: X(v[0]),Y(v[1]),Z(v[2])
{
}
//------------------------------------------------------------------------
inline
float3::float3(scalar s)
: X(s), Y(s), Z(s)
{
}
//------------------------------------------------------------------------
inline
float3::float3(const float3& rhs)
: X(rhs.X),Y(rhs.Y),Z(rhs.Z)
{
}
//------------------------------------------------------------------------
inline
float3&
float3::operator = (const float3& rhs)
{
X = rhs.X;
Y = rhs.Y;
Z = rhs.Z;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator = (scalar s)
{
X = s;
Y = s;
Z = s;
return *this;
}
//------------------------------------------------------------------------
inline
scalar*
float3::ptr()
{
return &X;
}
//------------------------------------------------------------------------
inline
const scalar*
float3::ptr() const
{
return &X;
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
inline
bool
float3::operator == (const float3& rhs) const
{
return ( X == rhs.X && Y == rhs.Y && Z == rhs.Z );
}
//------------------------------------------------------------------------
inline
bool
float3::operator != (const float3& rhs) const
{
return ( X != rhs.X || Y != rhs.Y || Z != rhs.Z );
}
//------------------------------------------------------------------------
inline
bool
float3::operator < ( const float3& rhs ) const
{
return ( X < rhs.X && Y < rhs.Y && Z < rhs.Z );
}
//------------------------------------------------------------------------
inline
bool
float3::operator > ( const float3& rhs ) const
{
return ( X > rhs.X && Y > rhs.Y && Z > rhs.Z );
}
//------------------------------------------------------------------------
inline
const float3&
float3::operator + () const
{
return *this;
}
//------------------------------------------------------------------------
inline
float3
float3::operator - () const
{
return float3(-X, -Y, -Z);
}
//------------------------------------------------------------------------
inline
float3
float3::operator + (const float3& rhs) const
{
return float3(X + rhs.X, Y + rhs.Y, Z + rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
float3::operator - (const float3& rhs) const
{
return float3(X - rhs.X, Y - rhs.Y, Z - rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
float3::operator * (scalar fScalar) const
{
return float3(X * fScalar, Y * fScalar, Z * fScalar);
}
//------------------------------------------------------------------------
inline
float3
float3::operator * (const float3& rhs) const
{
return float3(X * rhs.X, Y * rhs.Y, Z * rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
float3::operator / (scalar fScalar) const
{
n_assert( fScalar != 0.0 );
scalar fInv = 1.0f / fScalar;
return float3(X * fInv, Y * fInv, Z * fInv);
}
//------------------------------------------------------------------------
inline
float3
float3::operator / ( const float3& rhs) const
{
return float3( X / rhs.X, Y / rhs.Y, Z / rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
operator * (scalar fScalar, const float3& rhs)
{
return float3(fScalar * rhs.X, fScalar * rhs.Y, fScalar * rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
operator / (scalar fScalar, const float3& rhs)
{
return float3(fScalar / rhs.X, fScalar / rhs.Y, fScalar / rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
operator + (const float3& lhs, scalar rhs)
{
return float3(lhs.X + rhs, lhs.Y + rhs, lhs.Z + rhs);
}
//------------------------------------------------------------------------
inline
float3
operator + (scalar lhs, const float3& rhs)
{
return float3(lhs + rhs.X, lhs + rhs.Y, lhs + rhs.Z);
}
//------------------------------------------------------------------------
inline
float3
operator - (const float3& lhs, scalar rhs)
{
return float3(lhs.X - rhs, lhs.Y - rhs, lhs.Z - rhs);
}
//------------------------------------------------------------------------
inline
float3
operator - (scalar lhs, const float3& rhs)
{
return float3(lhs - rhs.X, lhs - rhs.Y, lhs - rhs.Z);
}
//------------------------------------------------------------------------
inline
float3&
float3::operator+=(const float3& rhs)
{
X += rhs.X;
Y += rhs.Y;
Z += rhs.Z;
return *this;
}
//------------------------------------------------------------------------
inline float3& float3::operator+=(scalar s)
{
X += s;
Y += s;
Z += s;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator-=(const float3& rhs)
{
X -= rhs.X;
Y -= rhs.Y;
Z -= rhs.Z;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator-=(scalar s)
{
X -= s;
Y -= s;
Z -= s;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator*=(const float3& rhs)
{
X *= rhs.X;
Y *= rhs.Y;
Z *= rhs.Z;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator*=(scalar s)
{
X *= s;
Y *= s;
Z *= s;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator/=(const float3& rhs)
{
X /= rhs.X;
Y /= rhs.Y;
Z /= rhs.Z;
return *this;
}
//------------------------------------------------------------------------
inline
float3&
float3::operator/=(scalar fScalar)
{
n_assert( fScalar != 0.0 );
scalar fInv = 1.0f / fScalar;
X *= fInv;
Y *= fInv;
Z *= fInv;
return *this;
}
//------------------------------------------------------------------------
inline
void
float3::set(scalar x, scalar y, scalar z)
{
X = x;
Y = y;
Z = z;
}
inline
void
float3::setFromFloat4(const float4& f4)
{
X = f4.x();
Y = f4.y();
Z = f4.z();
}
//------------------------------------------------------------------------
inline
scalar&
float3::x()
{
return X;
}
//------------------------------------------------------------------------
inline
scalar&
float3::y()
{
return Y;
}
//------------------------------------------------------------------------
inline scalar& float3::z()
{
return Z;
}
//------------------------------------------------------------------------
inline
scalar
float3::x() const
{
return X;
}
//------------------------------------------------------------------------
inline
scalar
float3::y() const
{
return Y;
}
//------------------------------------------------------------------------
inline
scalar
float3::z() const
{
return Z;
}
//------------------------------------------------------------------------
inline
scalar
float3::length() const
{
return n_sqrt(X * X + Y * Y + Z * Z );
}
//------------------------------------------------------------------------
inline
scalar
float3::lengthsq() const
{
return X * X + Y * Y + Z * Z ;
}
//------------------------------------------------------------------------
inline
scalar
float3::distance(const float3& rhs) const
{
return (*this - rhs).length();
}
//------------------------------------------------------------------------
inline
scalar
float3::distance(const plane& rhs) const
{
return X * rhs.a() + Y * rhs.b() + Z * rhs.c() + rhs.d();
}
//------------------------------------------------------------------------
inline
scalar
float3::distancesq(const float3& rhs) const
{
return (*this - rhs).lengthsq();
}
//------------------------------------------------------------------------
inline
scalar
float3::dotProduct(const float3& vec) const
{
return X * vec.X + Y * vec.Y + Z * vec.Z;
}
//------------------------------------------------------------------------
inline
scalar
float3::absDotProduct(const float3& vec) const
{
return n_abs(X * vec.X) + n_abs(Y * vec.Y) + n_abs(Z * vec.Z);
}
//------------------------------------------------------------------------
inline
float3
float3::crossProduct( const float3& rkVector ) const
{
return float3(
Y * rkVector.Z - Z * rkVector.Y,
Z * rkVector.X - X * rkVector.Z,
X * rkVector.Y - Y * rkVector.X);
}
//------------------------------------------------------------------------
inline
scalar
float3::normalise()
{
scalar fLength = length();
// Will also work for zero-sized vectors, but will change nothing
if ( fLength > epsilon )
{
scalar fInvLength = 1.0f / fLength;
X *= fInvLength;
Y *= fInvLength;
Z *= fInvLength;
}
return fLength;
}
//------------------------------------------------------------------------
inline
float3
float3::midPoint( const float3& vec ) const
{
return float3(
( X + vec.X ) * 0.5f,
( Y + vec.Y ) * 0.5f,
( Z + vec.Z ) * 0.5f );
}
//------------------------------------------------------------------------
inline
float3
float3::abs() const
{
return float3(n_abs(X), n_abs(Y) , n_abs(Z));
}
//------------------------------------------------------------------------
inline
bool
float3::any() const
{
return (this->X != 0.0f) || (this->Y != 0.0f) || (this->Z != 0.0f );
}
//------------------------------------------------------------------------
inline
bool
float3::all() const
{
return (this->X != 0.0f) && (this->Y != 0.0f) && (this->Z != 0.0f );
}
//------------------------------------------------------------------------
inline
bool
float3::isNaN() const
{
return n_isNaN(X) || n_isNaN(Y) || n_isNaN(Z);
}
//------------------------------------------------------------------------
inline
float3
float3::transformPoint(const Math::matrix44& m) const
{
float4 p = float4::transform(m,float4(X,Y,Z,1));
return float3(p.x(), p.y(),p.z());
}
//------------------------------------------------------------------------
inline
float3
float3::transformVector(const Math::matrix44& m) const
{
float4 p = float4::transform(m,float4(X,Y,Z,0));
return float3(p.x(), p.y(),p.z());
}
//------------------------------------------------------------------------
inline
float3
float3::maximize(const float3& v0, const float3& v1)
{
return float3(n_max(v0.X, v1.X), n_max(v0.Y, v1.Y),n_max(v0.Z, v1.Z));
}
//------------------------------------------------------------------------
inline
float3
float3::minimize(const float3& v0, const float3& v1)
{
return float3(n_min(v0.X, v1.X), n_min(v0.Y, v1.Y),n_min(v0.Z, v1.Z));
}
//------------------------------------------------------------------------
inline
float3
float3::normalize(const float3& v)
{
scalar fLength = v.length();
// Will also work for zero-sized vectors, but will change nothing
if ( fLength > epsilon )
{
scalar fInvLength = 1.0f / fLength;
return float3( v.X * fInvLength, v.Y * fInvLength, v.Z * fInvLength);
}
else
{
return float3(0.0f, 0.0f, 0.0f);
}
}
//------------------------------------------------------------------------
inline
bool
float3::isNormalize(const float3& v)
{
scalar ls = v.lengthsq();
return n_fequal(1.0f, ls, epsilon);
}
//------------------------------------------------------------------------
inline
float3
float3::lt(const float3& v0, const float3& v1)
{
float3 res;
res.X = (v0.X < v1.X) ? 1.0f : 0.0f;
res.Y = (v0.Y < v1.Y) ? 1.0f : 0.0f;
res.Z = (v0.Z < v1.Z) ? 1.0f : 0.0f;
return res;
}
//------------------------------------------------------------------------
inline
float3
float3::le(const float3& v0, const float3& v1)
{
float3 res;
res.X = (v0.X <= v1.X) ? 1.0f : 0.0f;
res.Y = (v0.Y <= v1.Y) ? 1.0f : 0.0f;
res.Z = (v0.Z <= v1.Z) ? 1.0f : 0.0f;
return res;
}
//------------------------------------------------------------------------
inline
float3
float3::gt(const float3& v0, const float3& v1)
{
float3 res;
res.X = (v0.X > v1.X) ? 1.0f : 0.0f;
res.Y = (v0.Y > v1.Y) ? 1.0f : 0.0f;
res.Z = (v0.Z > v1.Z) ? 1.0f : 0.0f;
return res;
}
//------------------------------------------------------------------------
inline
float3
float3::ge(const float3& v0, const float3& v1)
{
float3 res;
res.X = (v0.X >= v1.X) ? 1.0f : 0.0f;
res.Y = (v0.Y >= v1.Y) ? 1.0f : 0.0f;
res.Z = (v0.Z >= v1.Z) ? 1.0f : 0.0f;
return res;
}
//------------------------------------------------------------------------
inline float3 float3::perpendicular() const
{
static const float fSquareZero = static_cast<float>(1e-06 * 1e-06);
float3 perp = this->crossProduct(float3(1.0f, 0.0f, 0.0f));
if (perp.lengthsq() < fSquareZero)
{
perp = this->crossProduct(float3(0.0f, 1.0f, 0.0f));
}
perp.normalise();
return perp;
}
//------------------------------------------------------------------------
inline bool float3::compare(const Math::float3 &v0, const Math::float3 &v1, const Math::scalar &tol)
{
bool ret0 = n_fequal(v0.x(), v1.x(), tol);
bool ret1 = n_fequal(v0.y(), v1.y(), tol);
bool ret2 = n_fequal(v0.z(), v1.z(), tol);
return ret0 && ret1 && ret2;
}
//------------------------------------------------------------------------
inline
scalar
float3::operator [] ( const IndexT i ) const
{
n_assert( i < 3 );
return *(&X+i);
}
//------------------------------------------------------------------------
inline
scalar&
float3::operator [] ( const IndexT i )
{
n_assert( i < 3 );
return *(&X+i);
}
// namespace Math
}
#endif // __float3_H__