mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
48 lines
980 B
Python
48 lines
980 B
Python
import numpy as np
|
|
|
|
|
|
def linear_data_sample(N=40, rseed=0, m=3, b=-2):
|
|
rng = np.random.RandomState(rseed)
|
|
|
|
x = 10 * rng.rand(N)
|
|
dy = m / 2 * (1 + rng.rand(N))
|
|
y = m * x + b + dy * rng.randn(N)
|
|
|
|
return (x, y, dy)
|
|
|
|
|
|
def linear_data_sample_big_errs(N=40, rseed=0, m=3, b=-2):
|
|
rng = np.random.RandomState(rseed)
|
|
|
|
x = 10 * rng.rand(N)
|
|
dy = m / 2 * (1 + rng.rand(N))
|
|
dy[20:25] *= 10
|
|
y = m * x + b + dy * rng.randn(N)
|
|
|
|
return (x, y, dy)
|
|
|
|
|
|
def sample_light_curve(phased=True):
|
|
from astroML.datasets import fetch_LINEAR_sample
|
|
data = fetch_LINEAR_sample()
|
|
t, y, dy = data[18525697].T
|
|
|
|
if phased:
|
|
P_best = 0.580313015651
|
|
t /= P_best
|
|
|
|
return (t, y, dy)
|
|
|
|
|
|
def sample_light_curve_2(phased=True):
|
|
from astroML.datasets import fetch_LINEAR_sample
|
|
data = fetch_LINEAR_sample()
|
|
t, y, dy = data[10022663].T
|
|
|
|
if phased:
|
|
P_best = 0.61596079804
|
|
t /= P_best
|
|
|
|
return (t, y, dy)
|
|
|