data-science-ipython-notebooks/scikit-learn/fig_code/data.py

48 lines
980 B
Python

import numpy as np
def linear_data_sample(N=40, rseed=0, m=3, b=-2):
rng = np.random.RandomState(rseed)
x = 10 * rng.rand(N)
dy = m / 2 * (1 + rng.rand(N))
y = m * x + b + dy * rng.randn(N)
return (x, y, dy)
def linear_data_sample_big_errs(N=40, rseed=0, m=3, b=-2):
rng = np.random.RandomState(rseed)
x = 10 * rng.rand(N)
dy = m / 2 * (1 + rng.rand(N))
dy[20:25] *= 10
y = m * x + b + dy * rng.randn(N)
return (x, y, dy)
def sample_light_curve(phased=True):
from astroML.datasets import fetch_LINEAR_sample
data = fetch_LINEAR_sample()
t, y, dy = data[18525697].T
if phased:
P_best = 0.580313015651
t /= P_best
return (t, y, dy)
def sample_light_curve_2(phased=True):
from astroML.datasets import fetch_LINEAR_sample
data = fetch_LINEAR_sample()
t, y, dy = data[10022663].T
if phased:
P_best = 0.61596079804
t /= P_best
return (t, y, dy)