data-science-ipython-notebooks/pandas/03.07-Merge-and-Join.ipynb
2017-03-13 04:42:29 -04:00

3571 lines
104 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<!--BOOK_INFORMATION-->\n",
"<img align=\"left\" style=\"padding-right:10px;\" src=\"figures/PDSH-cover-small.png\">\n",
"*This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n",
"\n",
"*The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!*\n",
"\n",
"*No changes were made to the contents of this notebook from the original.*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<!--NAVIGATION-->\n",
"< [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb) | [Contents](Index.ipynb) | [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb) >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Combining Datasets: Merge and Join"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One essential feature offered by Pandas is its high-performance, in-memory join and merge operations.\n",
"If you have ever worked with databases, you should be familiar with this type of data interaction.\n",
"The main interface for this is the ``pd.merge`` function, and we'll see few examples of how this can work in practice.\n",
"\n",
"For convenience, we will start by redefining the ``display()`` functionality from the previous section:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"class display(object):\n",
" \"\"\"Display HTML representation of multiple objects\"\"\"\n",
" template = \"\"\"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>{0}</p>{1}\n",
" </div>\"\"\"\n",
" def __init__(self, *args):\n",
" self.args = args\n",
" \n",
" def _repr_html_(self):\n",
" return '\\n'.join(self.template.format(a, eval(a)._repr_html_())\n",
" for a in self.args)\n",
" \n",
" def __repr__(self):\n",
" return '\\n\\n'.join(a + '\\n' + repr(eval(a))\n",
" for a in self.args)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Relational Algebra\n",
"\n",
"The behavior implemented in ``pd.merge()`` is a subset of what is known as *relational algebra*, which is a formal set of rules for manipulating relational data, and forms the conceptual foundation of operations available in most databases.\n",
"The strength of the relational algebra approach is that it proposes several primitive operations, which become the building blocks of more complicated operations on any dataset.\n",
"With this lexicon of fundamental operations implemented efficiently in a database or other program, a wide range of fairly complicated composite operations can be performed.\n",
"\n",
"Pandas implements several of these fundamental building-blocks in the ``pd.merge()`` function and the related ``join()`` method of ``Series`` and ``Dataframe``s.\n",
"As we will see, these let you efficiently link data from different sources."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Categories of Joins\n",
"\n",
"The ``pd.merge()`` function implements a number of types of joins: the *one-to-one*, *many-to-one*, and *many-to-many* joins.\n",
"All three types of joins are accessed via an identical call to the ``pd.merge()`` interface; the type of join performed depends on the form of the input data.\n",
"Here we will show simple examples of the three types of merges, and discuss detailed options further below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### One-to-one joins\n",
"\n",
"Perhaps the simplest type of merge expresion is the one-to-one join, which is in many ways very similar to the column-wise concatenation seen in [Combining Datasets: Concat & Append](03.06-Concat-And-Append.ipynb).\n",
"As a concrete example, consider the following two ``DataFrames`` which contain information on several employees in a company:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df2</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Lisa</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Bob</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Jake</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1\n",
" employee group\n",
"0 Bob Accounting\n",
"1 Jake Engineering\n",
"2 Lisa Engineering\n",
"3 Sue HR\n",
"\n",
"df2\n",
" employee hire_date\n",
"0 Lisa 2004\n",
"1 Bob 2008\n",
"2 Jake 2012\n",
"3 Sue 2014"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],\n",
" 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})\n",
"df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],\n",
" 'hire_date': [2004, 2008, 2012, 2014]})\n",
"display('df1', 'df2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To combine this information into a single ``DataFrame``, we can use the ``pd.merge()`` function:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" employee group hire_date\n",
"0 Bob Accounting 2008\n",
"1 Jake Engineering 2012\n",
"2 Lisa Engineering 2004\n",
"3 Sue HR 2014"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3 = pd.merge(df1, df2)\n",
"df3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``pd.merge()`` function recognizes that each ``DataFrame`` has an \"employee\" column, and automatically joins using this column as a key.\n",
"The result of the merge is a new ``DataFrame`` that combines the information from the two inputs.\n",
"Notice that the order of entries in each column is not necessarily maintained: in this case, the order of the \"employee\" column differs between ``df1`` and ``df2``, and the ``pd.merge()`` function correctly accounts for this.\n",
"Additionally, keep in mind that the merge in general discards the index, except in the special case of merges by index (see the ``left_index`` and ``right_index`` keywords, discussed momentarily)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Many-to-one joins"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Many-to-one joins are joins in which one of the two key columns contains duplicate entries.\n",
"For the many-to-one case, the resulting ``DataFrame`` will preserve those duplicate entries as appropriate.\n",
"Consider the following example of a many-to-one join:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df3</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df4</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" <th>supervisor</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Accounting</td>\n",
" <td>Carly</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Engineering</td>\n",
" <td>Guido</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>HR</td>\n",
" <td>Steve</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df3, df4)</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" <th>supervisor</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" <td>Carly</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" <td>Guido</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" <td>Guido</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" <td>Steve</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df3\n",
" employee group hire_date\n",
"0 Bob Accounting 2008\n",
"1 Jake Engineering 2012\n",
"2 Lisa Engineering 2004\n",
"3 Sue HR 2014\n",
"\n",
"df4\n",
" group supervisor\n",
"0 Accounting Carly\n",
"1 Engineering Guido\n",
"2 HR Steve\n",
"\n",
"pd.merge(df3, df4)\n",
" employee group hire_date supervisor\n",
"0 Bob Accounting 2008 Carly\n",
"1 Jake Engineering 2012 Guido\n",
"2 Lisa Engineering 2004 Guido\n",
"3 Sue HR 2014 Steve"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],\n",
" 'supervisor': ['Carly', 'Guido', 'Steve']})\n",
"display('df3', 'df4', 'pd.merge(df3, df4)')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The resulting ``DataFrame`` has an aditional column with the \"supervisor\" information, where the information is repeated in one or more locations as required by the inputs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Many-to-many joins"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined.\n",
"If the key column in both the left and right array contains duplicates, then the result is a many-to-many merge.\n",
"This will be perhaps most clear with a concrete example.\n",
"Consider the following, where we have a ``DataFrame`` showing one or more skills associated with a particular group.\n",
"By performing a many-to-many join, we can recover the skills associated with any individual person:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df5</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" <th>skills</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Accounting</td>\n",
" <td>math</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Accounting</td>\n",
" <td>spreadsheets</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Engineering</td>\n",
" <td>coding</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Engineering</td>\n",
" <td>linux</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>HR</td>\n",
" <td>spreadsheets</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>HR</td>\n",
" <td>organization</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df1, df5)</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>skills</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>math</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>spreadsheets</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>coding</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>linux</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>coding</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>linux</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>spreadsheets</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>organization</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1\n",
" employee group\n",
"0 Bob Accounting\n",
"1 Jake Engineering\n",
"2 Lisa Engineering\n",
"3 Sue HR\n",
"\n",
"df5\n",
" group skills\n",
"0 Accounting math\n",
"1 Accounting spreadsheets\n",
"2 Engineering coding\n",
"3 Engineering linux\n",
"4 HR spreadsheets\n",
"5 HR organization\n",
"\n",
"pd.merge(df1, df5)\n",
" employee group skills\n",
"0 Bob Accounting math\n",
"1 Bob Accounting spreadsheets\n",
"2 Jake Engineering coding\n",
"3 Jake Engineering linux\n",
"4 Lisa Engineering coding\n",
"5 Lisa Engineering linux\n",
"6 Sue HR spreadsheets\n",
"7 Sue HR organization"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',\n",
" 'Engineering', 'Engineering', 'HR', 'HR'],\n",
" 'skills': ['math', 'spreadsheets', 'coding', 'linux',\n",
" 'spreadsheets', 'organization']})\n",
"display('df1', 'df5', \"pd.merge(df1, df5)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These three types of joins can be used with other Pandas tools to implement a wide array of functionality.\n",
"But in practice, datasets are rarely as clean as the one we're working with here.\n",
"In the following section we'll consider some of the options provided by ``pd.merge()`` that enable you to tune how the join operations work."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Specification of the Merge Key"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We've already seen the default behavior of ``pd.merge()``: it looks for one or more matching column names between the two inputs, and uses this as the key.\n",
"However, often the column names will not match so nicely, and ``pd.merge()`` provides a variety of options for handling this."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The ``on`` keyword\n",
"\n",
"Most simply, you can explicitly specify the name of the key column using the ``on`` keyword, which takes a column name or a list of column names:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df2</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Lisa</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Bob</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Jake</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df1, df2, on='employee')</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1\n",
" employee group\n",
"0 Bob Accounting\n",
"1 Jake Engineering\n",
"2 Lisa Engineering\n",
"3 Sue HR\n",
"\n",
"df2\n",
" employee hire_date\n",
"0 Lisa 2004\n",
"1 Bob 2008\n",
"2 Jake 2012\n",
"3 Sue 2014\n",
"\n",
"pd.merge(df1, df2, on='employee')\n",
" employee group hire_date\n",
"0 Bob Accounting 2008\n",
"1 Jake Engineering 2012\n",
"2 Lisa Engineering 2004\n",
"3 Sue HR 2014"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df1', 'df2', \"pd.merge(df1, df2, on='employee')\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This option works only if both the left and right ``DataFrame``s have the specified column name."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The ``left_on`` and ``right_on`` keywords\n",
"\n",
"At times you may wish to merge two datasets with different column names; for example, we may have a dataset in which the employee name is labeled as \"name\" rather than \"employee\".\n",
"In this case, we can use the ``left_on`` and ``right_on`` keywords to specify the two column names:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df3</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>70000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>80000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>120000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>90000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df1, df3, left_on=\"employee\", right_on=\"name\")</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>name</th>\n",
" <th>salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>Bob</td>\n",
" <td>70000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>Jake</td>\n",
" <td>80000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>Lisa</td>\n",
" <td>120000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>Sue</td>\n",
" <td>90000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1\n",
" employee group\n",
"0 Bob Accounting\n",
"1 Jake Engineering\n",
"2 Lisa Engineering\n",
"3 Sue HR\n",
"\n",
"df3\n",
" name salary\n",
"0 Bob 70000\n",
"1 Jake 80000\n",
"2 Lisa 120000\n",
"3 Sue 90000\n",
"\n",
"pd.merge(df1, df3, left_on=\"employee\", right_on=\"name\")\n",
" employee group name salary\n",
"0 Bob Accounting Bob 70000\n",
"1 Jake Engineering Jake 80000\n",
"2 Lisa Engineering Lisa 120000\n",
"3 Sue HR Sue 90000"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],\n",
" 'salary': [70000, 80000, 120000, 90000]})\n",
"display('df1', 'df3', 'pd.merge(df1, df3, left_on=\"employee\", right_on=\"name\")')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result has a redundant column that we can drop if desiredfor example, by using the ``drop()`` method of ``DataFrame``s:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employee</th>\n",
" <th>group</th>\n",
" <th>salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>Accounting</td>\n",
" <td>70000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>Engineering</td>\n",
" <td>80000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>Engineering</td>\n",
" <td>120000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>HR</td>\n",
" <td>90000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" employee group salary\n",
"0 Bob Accounting 70000\n",
"1 Jake Engineering 80000\n",
"2 Lisa Engineering 120000\n",
"3 Sue HR 90000"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.merge(df1, df3, left_on=\"employee\", right_on=\"name\").drop('name', axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The ``left_index`` and ``right_index`` keywords\n",
"\n",
"Sometimes, rather than merging on a column, you would instead like to merge on an index.\n",
"For example, your data might look like this:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df2a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1a\n",
" group\n",
"employee \n",
"Bob Accounting\n",
"Jake Engineering\n",
"Lisa Engineering\n",
"Sue HR\n",
"\n",
"df2a\n",
" hire_date\n",
"employee \n",
"Lisa 2004\n",
"Bob 2008\n",
"Jake 2012\n",
"Sue 2014"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1a = df1.set_index('employee')\n",
"df2a = df2.set_index('employee')\n",
"display('df1a', 'df2a')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can use the index as the key for merging by specifying the ``left_index`` and/or ``right_index`` flags in ``pd.merge()``:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df2a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df1a, df2a, left_index=True, right_index=True)</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1a\n",
" group\n",
"employee \n",
"Bob Accounting\n",
"Jake Engineering\n",
"Lisa Engineering\n",
"Sue HR\n",
"\n",
"df2a\n",
" hire_date\n",
"employee \n",
"Lisa 2004\n",
"Bob 2008\n",
"Jake 2012\n",
"Sue 2014\n",
"\n",
"pd.merge(df1a, df2a, left_index=True, right_index=True)\n",
" group hire_date\n",
"employee \n",
"Lisa Engineering 2004\n",
"Bob Accounting 2008\n",
"Jake Engineering 2012\n",
"Sue HR 2014"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df1a', 'df2a',\n",
" \"pd.merge(df1a, df2a, left_index=True, right_index=True)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For convenience, ``DataFrame``s implement the ``join()`` method, which performs a merge that defaults to joining on indices:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df2a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1a.join(df2a)</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" <th>hire_date</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" <td>2008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" <td>2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" <td>2004</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" <td>2014</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1a\n",
" group\n",
"employee \n",
"Bob Accounting\n",
"Jake Engineering\n",
"Lisa Engineering\n",
"Sue HR\n",
"\n",
"df2a\n",
" hire_date\n",
"employee \n",
"Lisa 2004\n",
"Bob 2008\n",
"Jake 2012\n",
"Sue 2014\n",
"\n",
"df1a.join(df2a)\n",
" group hire_date\n",
"employee \n",
"Bob Accounting 2008\n",
"Jake Engineering 2012\n",
"Lisa Engineering 2004\n",
"Sue HR 2014"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df1a', 'df2a', 'df1a.join(df2a)')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you'd like to mix indices and columns, you can combine ``left_index`` with ``right_on`` or ``left_on`` with ``right_index`` to get the desired behavior:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df1a</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" </tr>\n",
" <tr>\n",
" <th>employee</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Bob</th>\n",
" <td>Accounting</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jake</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lisa</th>\n",
" <td>Engineering</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sue</th>\n",
" <td>HR</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df3</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>70000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>80000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>120000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>90000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df1a, df3, left_index=True, right_on='name')</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>group</th>\n",
" <th>name</th>\n",
" <th>salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Accounting</td>\n",
" <td>Bob</td>\n",
" <td>70000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Engineering</td>\n",
" <td>Jake</td>\n",
" <td>80000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Engineering</td>\n",
" <td>Lisa</td>\n",
" <td>120000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>HR</td>\n",
" <td>Sue</td>\n",
" <td>90000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df1a\n",
" group\n",
"employee \n",
"Bob Accounting\n",
"Jake Engineering\n",
"Lisa Engineering\n",
"Sue HR\n",
"\n",
"df3\n",
" name salary\n",
"0 Bob 70000\n",
"1 Jake 80000\n",
"2 Lisa 120000\n",
"3 Sue 90000\n",
"\n",
"pd.merge(df1a, df3, left_index=True, right_on='name')\n",
" group name salary\n",
"0 Accounting Bob 70000\n",
"1 Engineering Jake 80000\n",
"2 Engineering Lisa 120000\n",
"3 HR Sue 90000"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df1a', 'df3', \"pd.merge(df1a, df3, left_index=True, right_on='name')\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All of these options also work with multiple indices and/or multiple columns; the interface for this behavior is very intuitive.\n",
"For more information on this, see the [\"Merge, Join, and Concatenate\" section](http://pandas.pydata.org/pandas-docs/stable/merging.html) of the Pandas documentation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Specifying Set Arithmetic for Joins"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In all the preceding examples we have glossed over one important consideration in performing a join: the type of set arithmetic used in the join.\n",
"This comes up when a value appears in one key column but not the other. Consider this example:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df6</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Peter</td>\n",
" <td>fish</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Paul</td>\n",
" <td>beans</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df7</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mary</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Joseph</td>\n",
" <td>beer</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df6, df7)</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df6\n",
" name food\n",
"0 Peter fish\n",
"1 Paul beans\n",
"2 Mary bread\n",
"\n",
"df7\n",
" name drink\n",
"0 Mary wine\n",
"1 Joseph beer\n",
"\n",
"pd.merge(df6, df7)\n",
" name food drink\n",
"0 Mary bread wine"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],\n",
" 'food': ['fish', 'beans', 'bread']},\n",
" columns=['name', 'food'])\n",
"df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],\n",
" 'drink': ['wine', 'beer']},\n",
" columns=['name', 'drink'])\n",
"display('df6', 'df7', 'pd.merge(df6, df7)')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we have merged two datasets that have only a single \"name\" entry in common: Mary.\n",
"By default, the result contains the *intersection* of the two sets of inputs; this is what is known as an *inner join*.\n",
"We can specify this explicitly using the ``how`` keyword, which defaults to ``\"inner\"``:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" name food drink\n",
"0 Mary bread wine"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.merge(df6, df7, how='inner')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Other options for the ``how`` keyword are ``'outer'``, ``'left'``, and ``'right'``.\n",
"An *outer join* returns a join over the union of the input columns, and fills in all missing values with NAs:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df6</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Peter</td>\n",
" <td>fish</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Paul</td>\n",
" <td>beans</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df7</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mary</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Joseph</td>\n",
" <td>beer</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df6, df7, how='outer')</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Peter</td>\n",
" <td>fish</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Paul</td>\n",
" <td>beans</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Joseph</td>\n",
" <td>NaN</td>\n",
" <td>beer</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df6\n",
" name food\n",
"0 Peter fish\n",
"1 Paul beans\n",
"2 Mary bread\n",
"\n",
"df7\n",
" name drink\n",
"0 Mary wine\n",
"1 Joseph beer\n",
"\n",
"pd.merge(df6, df7, how='outer')\n",
" name food drink\n",
"0 Peter fish NaN\n",
"1 Paul beans NaN\n",
"2 Mary bread wine\n",
"3 Joseph NaN beer"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df6', 'df7', \"pd.merge(df6, df7, how='outer')\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The *left join* and *right join* return joins over the left entries and right entries, respectively.\n",
"For example:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df6</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Peter</td>\n",
" <td>fish</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Paul</td>\n",
" <td>beans</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df7</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mary</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Joseph</td>\n",
" <td>beer</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df6, df7, how='left')</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>food</th>\n",
" <th>drink</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Peter</td>\n",
" <td>fish</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Paul</td>\n",
" <td>beans</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mary</td>\n",
" <td>bread</td>\n",
" <td>wine</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df6\n",
" name food\n",
"0 Peter fish\n",
"1 Paul beans\n",
"2 Mary bread\n",
"\n",
"df7\n",
" name drink\n",
"0 Mary wine\n",
"1 Joseph beer\n",
"\n",
"pd.merge(df6, df7, how='left')\n",
" name food drink\n",
"0 Peter fish NaN\n",
"1 Paul beans NaN\n",
"2 Mary bread wine"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df6', 'df7', \"pd.merge(df6, df7, how='left')\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The output rows now correspond to the entries in the left input. Using\n",
"``how='right'`` works in a similar manner.\n",
"\n",
"All of these options can be applied straightforwardly to any of the preceding join types."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overlapping Column Names: The ``suffixes`` Keyword"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, you may end up in a case where your two input ``DataFrame``s have conflicting column names.\n",
"Consider this example:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df8</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df9</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df8, df9, on=\"name\")</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank_x</th>\n",
" <th>rank_y</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df8\n",
" name rank\n",
"0 Bob 1\n",
"1 Jake 2\n",
"2 Lisa 3\n",
"3 Sue 4\n",
"\n",
"df9\n",
" name rank\n",
"0 Bob 3\n",
"1 Jake 1\n",
"2 Lisa 4\n",
"3 Sue 2\n",
"\n",
"pd.merge(df8, df9, on=\"name\")\n",
" name rank_x rank_y\n",
"0 Bob 1 3\n",
"1 Jake 2 1\n",
"2 Lisa 3 4\n",
"3 Sue 4 2"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],\n",
" 'rank': [1, 2, 3, 4]})\n",
"df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],\n",
" 'rank': [3, 1, 4, 2]})\n",
"display('df8', 'df9', 'pd.merge(df8, df9, on=\"name\")')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because the output would have two conflicting column names, the merge function automatically appends a suffix ``_x`` or ``_y`` to make the output columns unique.\n",
"If these defaults are inappropriate, it is possible to specify a custom suffix using the ``suffixes`` keyword:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df8</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>df9</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pd.merge(df8, df9, on=\"name\", suffixes=[\"_L\", \"_R\"])</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>rank_L</th>\n",
" <th>rank_R</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Bob</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Jake</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lisa</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sue</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"df8\n",
" name rank\n",
"0 Bob 1\n",
"1 Jake 2\n",
"2 Lisa 3\n",
"3 Sue 4\n",
"\n",
"df9\n",
" name rank\n",
"0 Bob 3\n",
"1 Jake 1\n",
"2 Lisa 4\n",
"3 Sue 2\n",
"\n",
"pd.merge(df8, df9, on=\"name\", suffixes=[\"_L\", \"_R\"])\n",
" name rank_L rank_R\n",
"0 Bob 1 3\n",
"1 Jake 2 1\n",
"2 Lisa 3 4\n",
"3 Sue 4 2"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display('df8', 'df9', 'pd.merge(df8, df9, on=\"name\", suffixes=[\"_L\", \"_R\"])')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These suffixes work in any of the possible join patterns, and work also if there are multiple overlapping columns."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For more information on these patterns, see [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb) where we dive a bit deeper into relational algebra.\n",
"Also see the [Pandas \"Merge, Join and Concatenate\" documentation](http://pandas.pydata.org/pandas-docs/stable/merging.html) for further discussion of these topics."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: US States Data\n",
"\n",
"Merge and join operations come up most often when combining data from different sources.\n",
"Here we will consider an example of some data about US states and their populations.\n",
"The data files can be found at http://github.com/jakevdp/data-USstates/:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Following are shell commands to download the data\n",
"# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-population.csv\n",
"# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-areas.csv\n",
"# !curl -O https://raw.githubusercontent.com/jakevdp/data-USstates/master/state-abbrevs.csv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a look at the three datasets, using the Pandas ``read_csv()`` function:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>pop.head()</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2012</td>\n",
" <td>1117489.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2012</td>\n",
" <td>4817528.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2010</td>\n",
" <td>1130966.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>4785570.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2011</td>\n",
" <td>1125763.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>areas.head()</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state</th>\n",
" <th>area (sq. mi)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Alabama</td>\n",
" <td>52423</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Alaska</td>\n",
" <td>656425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arizona</td>\n",
" <td>114006</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Arkansas</td>\n",
" <td>53182</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>California</td>\n",
" <td>163707</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>\n",
"<div style=\"float: left; padding: 10px;\">\n",
" <p style='font-family:\"Courier New\", Courier, monospace'>abbrevs.head()</p><div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state</th>\n",
" <th>abbreviation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Alabama</td>\n",
" <td>AL</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Alaska</td>\n",
" <td>AK</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arizona</td>\n",
" <td>AZ</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Arkansas</td>\n",
" <td>AR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>California</td>\n",
" <td>CA</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" </div>"
],
"text/plain": [
"pop.head()\n",
" state/region ages year population\n",
"0 AL under18 2012 1117489.0\n",
"1 AL total 2012 4817528.0\n",
"2 AL under18 2010 1130966.0\n",
"3 AL total 2010 4785570.0\n",
"4 AL under18 2011 1125763.0\n",
"\n",
"areas.head()\n",
" state area (sq. mi)\n",
"0 Alabama 52423\n",
"1 Alaska 656425\n",
"2 Arizona 114006\n",
"3 Arkansas 53182\n",
"4 California 163707\n",
"\n",
"abbrevs.head()\n",
" state abbreviation\n",
"0 Alabama AL\n",
"1 Alaska AK\n",
"2 Arizona AZ\n",
"3 Arkansas AR\n",
"4 California CA"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pop = pd.read_csv('data/state-population.csv')\n",
"areas = pd.read_csv('data/state-areas.csv')\n",
"abbrevs = pd.read_csv('data/state-abbrevs.csv')\n",
"\n",
"display('pop.head()', 'areas.head()', 'abbrevs.head()')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given this information, say we want to compute a relatively straightforward result: rank US states and territories by their 2010 population density.\n",
"We clearly have the data here to find this result, but we'll have to combine the datasets to find the result.\n",
"\n",
"We'll start with a many-to-one merge that will give us the full state name within the population ``DataFrame``.\n",
"We want to merge based on the ``state/region`` column of ``pop``, and the ``abbreviation`` column of ``abbrevs``.\n",
"We'll use ``how='outer'`` to make sure no data is thrown away due to mismatched labels."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2012</td>\n",
" <td>1117489.0</td>\n",
" <td>Alabama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2012</td>\n",
" <td>4817528.0</td>\n",
" <td>Alabama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2010</td>\n",
" <td>1130966.0</td>\n",
" <td>Alabama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>4785570.0</td>\n",
" <td>Alabama</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2011</td>\n",
" <td>1125763.0</td>\n",
" <td>Alabama</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state/region ages year population state\n",
"0 AL under18 2012 1117489.0 Alabama\n",
"1 AL total 2012 4817528.0 Alabama\n",
"2 AL under18 2010 1130966.0 Alabama\n",
"3 AL total 2010 4785570.0 Alabama\n",
"4 AL under18 2011 1125763.0 Alabama"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged = pd.merge(pop, abbrevs, how='outer',\n",
" left_on='state/region', right_on='abbreviation')\n",
"merged = merged.drop('abbreviation', 1) # drop duplicate info\n",
"merged.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's double-check whether there were any mismatches here, which we can do by looking for rows with nulls:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"state/region False\n",
"ages False\n",
"year False\n",
"population True\n",
"state True\n",
"dtype: bool"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged.isnull().any()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some of the ``population`` info is null; let's figure out which these are!"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2448</th>\n",
" <td>PR</td>\n",
" <td>under18</td>\n",
" <td>1990</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2449</th>\n",
" <td>PR</td>\n",
" <td>total</td>\n",
" <td>1990</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2450</th>\n",
" <td>PR</td>\n",
" <td>total</td>\n",
" <td>1991</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2451</th>\n",
" <td>PR</td>\n",
" <td>under18</td>\n",
" <td>1991</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2452</th>\n",
" <td>PR</td>\n",
" <td>total</td>\n",
" <td>1993</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state/region ages year population state\n",
"2448 PR under18 1990 NaN NaN\n",
"2449 PR total 1990 NaN NaN\n",
"2450 PR total 1991 NaN NaN\n",
"2451 PR under18 1991 NaN NaN\n",
"2452 PR total 1993 NaN NaN"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged[merged['population'].isnull()].head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It appears that all the null population values are from Puerto Rico prior to the year 2000; this is likely due to this data not being available from the original source.\n",
"\n",
"More importantly, we see also that some of the new ``state`` entries are also null, which means that there was no corresponding entry in the ``abbrevs`` key!\n",
"Let's figure out which regions lack this match:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array(['PR', 'USA'], dtype=object)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged.loc[merged['state'].isnull(), 'state/region'].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can quickly infer the issue: our population data includes entries for Puerto Rico (PR) and the United States as a whole (USA), while these entries do not appear in the state abbreviation key.\n",
"We can fix these quickly by filling in appropriate entries:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"state/region False\n",
"ages False\n",
"year False\n",
"population True\n",
"state False\n",
"dtype: bool"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'\n",
"merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'\n",
"merged.isnull().any()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"No more nulls in the ``state`` column: we're all set!\n",
"\n",
"Now we can merge the result with the area data using a similar procedure.\n",
"Examining our results, we will want to join on the ``state`` column in both:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>area (sq. mi)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2012</td>\n",
" <td>1117489.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2012</td>\n",
" <td>4817528.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2010</td>\n",
" <td>1130966.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>4785570.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2011</td>\n",
" <td>1125763.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state/region ages year population state area (sq. mi)\n",
"0 AL under18 2012 1117489.0 Alabama 52423.0\n",
"1 AL total 2012 4817528.0 Alabama 52423.0\n",
"2 AL under18 2010 1130966.0 Alabama 52423.0\n",
"3 AL total 2010 4785570.0 Alabama 52423.0\n",
"4 AL under18 2011 1125763.0 Alabama 52423.0"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final = pd.merge(merged, areas, on='state', how='left')\n",
"final.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, let's check for nulls to see if there were any mismatches:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"state/region False\n",
"ages False\n",
"year False\n",
"population True\n",
"state False\n",
"area (sq. mi) True\n",
"dtype: bool"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final.isnull().any()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are nulls in the ``area`` column; we can take a look to see which regions were ignored here:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array(['United States'], dtype=object)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final['state'][final['area (sq. mi)'].isnull()].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that our ``areas`` ``DataFrame`` does not contain the area of the United States as a whole.\n",
"We could insert the appropriate value (using the sum of all state areas, for instance), but in this case we'll just drop the null values because the population density of the entire United States is not relevant to our current discussion:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>area (sq. mi)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2012</td>\n",
" <td>1117489.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2012</td>\n",
" <td>4817528.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2010</td>\n",
" <td>1130966.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>4785570.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>AL</td>\n",
" <td>under18</td>\n",
" <td>2011</td>\n",
" <td>1125763.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state/region ages year population state area (sq. mi)\n",
"0 AL under18 2012 1117489.0 Alabama 52423.0\n",
"1 AL total 2012 4817528.0 Alabama 52423.0\n",
"2 AL under18 2010 1130966.0 Alabama 52423.0\n",
"3 AL total 2010 4785570.0 Alabama 52423.0\n",
"4 AL under18 2011 1125763.0 Alabama 52423.0"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final.dropna(inplace=True)\n",
"final.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we have all the data we need. To answer the question of interest, let's first select the portion of the data corresponding with the year 2000, and the total population.\n",
"We'll use the ``query()`` function to do this quickly (this requires the ``numexpr`` package to be installed; see [High-Performance Pandas: ``eval()`` and ``query()``](03.12-Performance-Eval-and-Query.ipynb)):"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state/region</th>\n",
" <th>ages</th>\n",
" <th>year</th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>area (sq. mi)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>AL</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>4785570.0</td>\n",
" <td>Alabama</td>\n",
" <td>52423.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>91</th>\n",
" <td>AK</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>713868.0</td>\n",
" <td>Alaska</td>\n",
" <td>656425.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>101</th>\n",
" <td>AZ</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>6408790.0</td>\n",
" <td>Arizona</td>\n",
" <td>114006.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>189</th>\n",
" <td>AR</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>2922280.0</td>\n",
" <td>Arkansas</td>\n",
" <td>53182.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>197</th>\n",
" <td>CA</td>\n",
" <td>total</td>\n",
" <td>2010</td>\n",
" <td>37333601.0</td>\n",
" <td>California</td>\n",
" <td>163707.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state/region ages year population state area (sq. mi)\n",
"3 AL total 2010 4785570.0 Alabama 52423.0\n",
"91 AK total 2010 713868.0 Alaska 656425.0\n",
"101 AZ total 2010 6408790.0 Arizona 114006.0\n",
"189 AR total 2010 2922280.0 Arkansas 53182.0\n",
"197 CA total 2010 37333601.0 California 163707.0"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2010 = final.query(\"year == 2010 & ages == 'total'\")\n",
"data2010.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's compute the population density and display it in order.\n",
"We'll start by re-indexing our data on the state, and then compute the result:"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"data2010.set_index('state', inplace=True)\n",
"density = data2010['population'] / data2010['area (sq. mi)']"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"state\n",
"District of Columbia 8898.897059\n",
"Puerto Rico 1058.665149\n",
"New Jersey 1009.253268\n",
"Rhode Island 681.339159\n",
"Connecticut 645.600649\n",
"dtype: float64"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"density.sort_values(ascending=False, inplace=True)\n",
"density.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their 2010 population density, in residents per square mile.\n",
"We can see that by far the densest region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the densest is New Jersey.\n",
"\n",
"We can also check the end of the list:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"state\n",
"South Dakota 10.583512\n",
"North Dakota 9.537565\n",
"Montana 6.736171\n",
"Wyoming 5.768079\n",
"Alaska 1.087509\n",
"dtype: float64"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"density.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that the least dense state, by far, is Alaska, averaging slightly over one resident per square mile.\n",
"\n",
"This type of messy data merging is a common task when trying to answer questions using real-world data sources.\n",
"I hope that this example has given you an idea of the ways you can combine tools we've covered in order to gain insight from your data!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<!--NAVIGATION-->\n",
"< [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb) | [Contents](Index.ipynb) | [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb) >"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}