mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
230 lines
5.4 KiB
Python
230 lines
5.4 KiB
Python
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Basic Operations in TensorFlow\n",
|
|
"\n",
|
|
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
|
|
"\n",
|
|
"## Setup\n",
|
|
"\n",
|
|
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import tensorflow as tf"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Basic constant operations\n",
|
|
"# The value returned by the constructor represents the output\n",
|
|
"# of the Constant op.\n",
|
|
"a = tf.constant(2)\n",
|
|
"b = tf.constant(3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"a=2, b=3\n",
|
|
"Addition with constants: 5\n",
|
|
"Multiplication with constants: 6\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Launch the default graph.\n",
|
|
"with tf.Session() as sess:\n",
|
|
" print \"a=2, b=3\"\n",
|
|
" print \"Addition with constants: %i\" % sess.run(a+b)\n",
|
|
" print \"Multiplication with constants: %i\" % sess.run(a*b)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Basic Operations with variable as graph input\n",
|
|
"# The value returned by the constructor represents the output\n",
|
|
"# of the Variable op. (define as input when running session)\n",
|
|
"# tf Graph input\n",
|
|
"a = tf.placeholder(tf.int16)\n",
|
|
"b = tf.placeholder(tf.int16)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define some operations\n",
|
|
"add = tf.add(a, b)\n",
|
|
"mul = tf.mul(a, b)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Addition with variables: 5\n",
|
|
"Multiplication with variables: 6\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Launch the default graph.\n",
|
|
"with tf.Session() as sess:\n",
|
|
" # Run every operation with variable input\n",
|
|
" print \"Addition with variables: %i\" % sess.run(add, feed_dict={a: 2, b: 3})\n",
|
|
" print \"Multiplication with variables: %i\" % sess.run(mul, feed_dict={a: 2, b: 3})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# ----------------\n",
|
|
"# More in details:\n",
|
|
"# Matrix Multiplication from TensorFlow official tutorial\n",
|
|
"\n",
|
|
"# Create a Constant op that produces a 1x2 matrix. The op is\n",
|
|
"# added as a node to the default graph.\n",
|
|
"#\n",
|
|
"# The value returned by the constructor represents the output\n",
|
|
"# of the Constant op.\n",
|
|
"matrix1 = tf.constant([[3., 3.]])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create another Constant that produces a 2x1 matrix.\n",
|
|
"matrix2 = tf.constant([[2.],[2.]])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.\n",
|
|
"# The returned value, 'product', represents the result of the matrix\n",
|
|
"# multiplication.\n",
|
|
"product = tf.matmul(matrix1, matrix2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[[ 12.]]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# To run the matmul op we call the session 'run()' method, passing 'product'\n",
|
|
"# which represents the output of the matmul op. This indicates to the call\n",
|
|
"# that we want to get the output of the matmul op back.\n",
|
|
"#\n",
|
|
"# All inputs needed by the op are run automatically by the session. They\n",
|
|
"# typically are run in parallel.\n",
|
|
"#\n",
|
|
"# The call 'run(product)' thus causes the execution of threes ops in the\n",
|
|
"# graph: the two constants and matmul.\n",
|
|
"#\n",
|
|
"# The output of the op is returned in 'result' as a numpy `ndarray` object.\n",
|
|
"with tf.Session() as sess:\n",
|
|
" result = sess.run(product)\n",
|
|
" print result"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.5+"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|