mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
451 lines
15 KiB
Plaintext
451 lines
15 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<small><i>This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/data-science-ipython-notebooks).</i></small>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Python Hadoop MapReduce: Analyzing AWS S3 Bucket Logs with mrjob\n",
|
|
"\n",
|
|
"* [Introduction](#Introduction)\n",
|
|
"* [Setup](#Setup)\n",
|
|
"* [Processing S3 Logs](#Processing-S3-Logs)\n",
|
|
"* [Running Amazon Elastic MapReduce Jobs](#Running-Amazon-Elastic-MapReduce-Jobs)\n",
|
|
"* [Unit Testing S3 Logs](#Unit-Testing-S3-Logs)\n",
|
|
"* [Running S3 Logs Unit Test](#Running-S3-Logs-Unit-Test)\n",
|
|
"* [Sample Config File](#Sample-Config-File)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Introduction\n",
|
|
"\n",
|
|
"[mrjob](https://pythonhosted.org/mrjob/) lets you write MapReduce jobs in Python 2.5+ and run them on several platforms. You can:\n",
|
|
"\n",
|
|
"* Write multi-step MapReduce jobs in pure Python\n",
|
|
"* Test on your local machine\n",
|
|
"* Run on a Hadoop cluster\n",
|
|
"* Run in the cloud using Amazon Elastic MapReduce (EMR)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup\n",
|
|
"\n",
|
|
"From PyPI:\n",
|
|
"\n",
|
|
"``pip install mrjob``\n",
|
|
"\n",
|
|
"From source:\n",
|
|
"\n",
|
|
"``python setup.py install``\n",
|
|
"\n",
|
|
"See [Sample Config File](#Sample-Config-File) section for additional config details."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Processing S3 Logs\n",
|
|
"\n",
|
|
"Sample mrjob code that processes log files on Amazon S3 based on the [S3 logging format](http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html):"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%file mr_s3_log_parser.py\n",
|
|
"\n",
|
|
"import time\n",
|
|
"from mrjob.job import MRJob\n",
|
|
"from mrjob.protocol import RawValueProtocol, ReprProtocol\n",
|
|
"import re\n",
|
|
"\n",
|
|
"\n",
|
|
"class MrS3LogParser(MRJob):\n",
|
|
" \"\"\"Parses the logs from S3 based on the S3 logging format:\n",
|
|
" http://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html\n",
|
|
" \n",
|
|
" Aggregates a user's daily requests by user agent and operation\n",
|
|
" \n",
|
|
" Outputs date_time, requester, user_agent, operation, count\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" LOGPATS = r'(\\S+) (\\S+) \\[(.*?)\\] (\\S+) (\\S+) ' \\\n",
|
|
" r'(\\S+) (\\S+) (\\S+) (\"([^\"]+)\"|-) ' \\\n",
|
|
" r'(\\S+) (\\S+) (\\S+) (\\S+) (\\S+) (\\S+) ' \\\n",
|
|
" r'(\"([^\"]+)\"|-) (\"([^\"]+)\"|-)'\n",
|
|
" NUM_ENTRIES_PER_LINE = 17\n",
|
|
" logpat = re.compile(LOGPATS)\n",
|
|
"\n",
|
|
" (S3_LOG_BUCKET_OWNER, \n",
|
|
" S3_LOG_BUCKET, \n",
|
|
" S3_LOG_DATE_TIME,\n",
|
|
" S3_LOG_IP, \n",
|
|
" S3_LOG_REQUESTER_ID, \n",
|
|
" S3_LOG_REQUEST_ID,\n",
|
|
" S3_LOG_OPERATION, \n",
|
|
" S3_LOG_KEY, \n",
|
|
" S3_LOG_HTTP_METHOD,\n",
|
|
" S3_LOG_HTTP_STATUS, \n",
|
|
" S3_LOG_S3_ERROR, \n",
|
|
" S3_LOG_BYTES_SENT,\n",
|
|
" S3_LOG_OBJECT_SIZE, \n",
|
|
" S3_LOG_TOTAL_TIME, \n",
|
|
" S3_LOG_TURN_AROUND_TIME,\n",
|
|
" S3_LOG_REFERER, \n",
|
|
" S3_LOG_USER_AGENT) = range(NUM_ENTRIES_PER_LINE)\n",
|
|
"\n",
|
|
" DELIMITER = '\\t'\n",
|
|
"\n",
|
|
" # We use RawValueProtocol for input to be format agnostic\n",
|
|
" # and avoid any type of parsing errors\n",
|
|
" INPUT_PROTOCOL = RawValueProtocol\n",
|
|
"\n",
|
|
" # We use RawValueProtocol for output so we can output raw lines\n",
|
|
" # instead of (k, v) pairs\n",
|
|
" OUTPUT_PROTOCOL = RawValueProtocol\n",
|
|
"\n",
|
|
" # Encode the intermediate records using repr() instead of JSON, so the\n",
|
|
" # record doesn't get Unicode-encoded\n",
|
|
" INTERNAL_PROTOCOL = ReprProtocol\n",
|
|
"\n",
|
|
" def clean_date_time_zone(self, raw_date_time_zone):\n",
|
|
" \"\"\"Converts entry 22/Jul/2013:21:04:17 +0000 to the format\n",
|
|
" 'YYYY-MM-DD HH:MM:SS' which is more suitable for loading into\n",
|
|
" a database such as Redshift or RDS\n",
|
|
"\n",
|
|
" Note: requires the chars \"[ ]\" to be stripped prior to input\n",
|
|
" Returns the converted datetime annd timezone\n",
|
|
" or None for both values if failed\n",
|
|
"\n",
|
|
" TODO: Needs to combine timezone with date as one field\n",
|
|
" \"\"\"\n",
|
|
" date_time = None\n",
|
|
" time_zone_parsed = None\n",
|
|
"\n",
|
|
" # TODO: Probably cleaner to parse this with a regex\n",
|
|
" date_parsed = raw_date_time_zone[:raw_date_time_zone.find(\":\")]\n",
|
|
" time_parsed = raw_date_time_zone[raw_date_time_zone.find(\":\") + 1:\n",
|
|
" raw_date_time_zone.find(\"+\") - 1]\n",
|
|
" time_zone_parsed = raw_date_time_zone[raw_date_time_zone.find(\"+\"):]\n",
|
|
"\n",
|
|
" try:\n",
|
|
" date_struct = time.strptime(date_parsed, \"%d/%b/%Y\")\n",
|
|
" converted_date = time.strftime(\"%Y-%m-%d\", date_struct)\n",
|
|
" date_time = converted_date + \" \" + time_parsed\n",
|
|
"\n",
|
|
" # Throws a ValueError exception if the operation fails that is\n",
|
|
" # caught by the calling function and is handled appropriately\n",
|
|
" except ValueError as error:\n",
|
|
" raise ValueError(error)\n",
|
|
" else:\n",
|
|
" return converted_date, date_time, time_zone_parsed\n",
|
|
"\n",
|
|
" def mapper(self, _, line):\n",
|
|
" line = line.strip()\n",
|
|
" match = self.logpat.search(line)\n",
|
|
"\n",
|
|
" date_time = None\n",
|
|
" requester = None\n",
|
|
" user_agent = None\n",
|
|
" operation = None\n",
|
|
"\n",
|
|
" try:\n",
|
|
" for n in range(self.NUM_ENTRIES_PER_LINE):\n",
|
|
" group = match.group(1 + n)\n",
|
|
"\n",
|
|
" if n == self.S3_LOG_DATE_TIME:\n",
|
|
" date, date_time, time_zone_parsed = \\\n",
|
|
" self.clean_date_time_zone(group)\n",
|
|
" # Leave the following line of code if \n",
|
|
" # you want to aggregate by date\n",
|
|
" date_time = date + \" 00:00:00\"\n",
|
|
" elif n == self.S3_LOG_REQUESTER_ID:\n",
|
|
" requester = group\n",
|
|
" elif n == self.S3_LOG_USER_AGENT:\n",
|
|
" user_agent = group\n",
|
|
" elif n == self.S3_LOG_OPERATION:\n",
|
|
" operation = group\n",
|
|
" else:\n",
|
|
" pass\n",
|
|
"\n",
|
|
" except Exception:\n",
|
|
" yield ((\"Error while parsing line: %s\", line), 1)\n",
|
|
" else:\n",
|
|
" yield ((date_time, requester, user_agent, operation), 1)\n",
|
|
"\n",
|
|
" def reducer(self, key, values):\n",
|
|
" output = list(key)\n",
|
|
" output = self.DELIMITER.join(output) + \\\n",
|
|
" self.DELIMITER + \\\n",
|
|
" str(sum(values))\n",
|
|
"\n",
|
|
" yield None, output\n",
|
|
"\n",
|
|
" def steps(self):\n",
|
|
" return [\n",
|
|
" self.mr(mapper=self.mapper,\n",
|
|
" reducer=self.reducer)\n",
|
|
" ]\n",
|
|
"\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" MrS3LogParser.run()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Running Amazon Elastic MapReduce Jobs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Run an Amazon Elastic MapReduce (EMR) job on the given input (must be a flat file hierarchy), placing the results in the output (output directory must not exist):"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!python mr-mr_s3_log_parser.py -r emr s3://bucket-source/ --output-dir=s3://bucket-dest/"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Run a MapReduce job locally on the specified input file, sending the results to the specified output file:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!python mr_s3_log_parser.py input_data.txt > output_data.txt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Unit Testing S3 Logs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Accompanying unit test:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%file test_mr_s3_log_parser.py\n",
|
|
"\n",
|
|
"from StringIO import StringIO\n",
|
|
"import unittest2 as unittest\n",
|
|
"from mr_s3_log_parser import MrS3LogParser\n",
|
|
"\n",
|
|
"\n",
|
|
"class MrTestsUtil:\n",
|
|
"\n",
|
|
" def run_mr_sandbox(self, mr_job, stdin):\n",
|
|
" # inline runs the job in the same process so small jobs tend to\n",
|
|
" # run faster and stack traces are simpler\n",
|
|
" # --no-conf prevents options from local mrjob.conf from polluting\n",
|
|
" # the testing environment\n",
|
|
" # \"-\" reads from standard in\n",
|
|
" mr_job.sandbox(stdin=stdin)\n",
|
|
"\n",
|
|
" # make_runner ensures job cleanup is performed regardless of\n",
|
|
" # success or failure\n",
|
|
" with mr_job.make_runner() as runner:\n",
|
|
" runner.run()\n",
|
|
" for line in runner.stream_output():\n",
|
|
" key, value = mr_job.parse_output_line(line)\n",
|
|
" yield value\n",
|
|
"\n",
|
|
" \n",
|
|
"class TestMrS3LogParser(unittest.TestCase):\n",
|
|
"\n",
|
|
" mr_job = None\n",
|
|
" mr_tests_util = None\n",
|
|
"\n",
|
|
" RAW_LOG_LINE_INVALID = \\\n",
|
|
" '00000fe9688b6e57f75bd2b7f7c1610689e8f01000000' \\\n",
|
|
" '00000388225bcc00000 ' \\\n",
|
|
" 's3-storage [22/Jul/2013:21:03:27 +0000] ' \\\n",
|
|
" '00.111.222.33 ' \\\n",
|
|
"\n",
|
|
" RAW_LOG_LINE_VALID = \\\n",
|
|
" '00000fe9688b6e57f75bd2b7f7c1610689e8f01000000' \\\n",
|
|
" '00000388225bcc00000 ' \\\n",
|
|
" 's3-storage [22/Jul/2013:21:03:27 +0000] ' \\\n",
|
|
" '00.111.222.33 ' \\\n",
|
|
" 'arn:aws:sts::000005646931:federated-user/user 00000AB825500000 ' \\\n",
|
|
" 'REST.HEAD.OBJECT user/file.pdf ' \\\n",
|
|
" '\"HEAD /user/file.pdf?versionId=00000XMHZJp6DjM9x500000' \\\n",
|
|
" '00000SDZk ' \\\n",
|
|
" 'HTTP/1.1\" 200 - - 4000272 18 - \"-\" ' \\\n",
|
|
" '\"Boto/2.5.1 (darwin) USER-AGENT/1.0.14.0\" ' \\\n",
|
|
" '00000XMHZJp6DjM9x5JVEAMo8MG00000'\n",
|
|
"\n",
|
|
" DATE_TIME_ZONE_INVALID = \"AB/Jul/2013:21:04:17 +0000\"\n",
|
|
" DATE_TIME_ZONE_VALID = \"22/Jul/2013:21:04:17 +0000\"\n",
|
|
" DATE_VALID = \"2013-07-22\"\n",
|
|
" DATE_TIME_VALID = \"2013-07-22 21:04:17\"\n",
|
|
" TIME_ZONE_VALID = \"+0000\"\n",
|
|
"\n",
|
|
" def __init__(self, *args, **kwargs):\n",
|
|
" super(TestMrS3LogParser, self).__init__(*args, **kwargs)\n",
|
|
" self.mr_job = MrS3LogParser(['-r', 'inline', '--no-conf', '-'])\n",
|
|
" self.mr_tests_util = MrTestsUtil()\n",
|
|
"\n",
|
|
" def test_invalid_log_lines(self):\n",
|
|
" stdin = StringIO(self.RAW_LOG_LINE_INVALID)\n",
|
|
"\n",
|
|
" for result in self.mr_tests_util.run_mr_sandbox(self.mr_job, stdin):\n",
|
|
" self.assertEqual(result.find(\"Error\"), 0)\n",
|
|
"\n",
|
|
" def test_valid_log_lines(self):\n",
|
|
" stdin = StringIO(self.RAW_LOG_LINE_VALID)\n",
|
|
"\n",
|
|
" for result in self.mr_tests_util.run_mr_sandbox(self.mr_job, stdin):\n",
|
|
" self.assertEqual(result.find(\"Error\"), -1)\n",
|
|
"\n",
|
|
" def test_clean_date_time_zone(self):\n",
|
|
" date, date_time, time_zone_parsed = \\\n",
|
|
" self.mr_job.clean_date_time_zone(self.DATE_TIME_ZONE_VALID)\n",
|
|
" self.assertEqual(date, self.DATE_VALID)\n",
|
|
" self.assertEqual(date_time, self.DATE_TIME_VALID)\n",
|
|
" self.assertEqual(time_zone_parsed, self.TIME_ZONE_VALID)\n",
|
|
"\n",
|
|
" # Use a lambda to delay the calling of clean_date_time_zone so that\n",
|
|
" # assertRaises has enough time to handle it properly\n",
|
|
" self.assertRaises(ValueError,\n",
|
|
" lambda: self.mr_job.clean_date_time_zone(\n",
|
|
" self.DATE_TIME_ZONE_INVALID))\n",
|
|
"\n",
|
|
"if __name__ == '__main__':\n",
|
|
" unittest.main()\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Running S3 Logs Unit Test"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Run the mrjob test:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!python test_mr_s3_log_parser.py -v"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Sample Config File"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"runners:\n",
|
|
" emr:\n",
|
|
" aws_access_key_id: __ACCESS_KEY__\n",
|
|
" aws_secret_access_key: __SECRET_ACCESS_KEY__\n",
|
|
" aws_region: us-east-1\n",
|
|
" ec2_key_pair: EMR\n",
|
|
" ec2_key_pair_file: ~/.ssh/EMR.pem\n",
|
|
" ssh_tunnel_to_job_tracker: true\n",
|
|
" ec2_master_instance_type: m3.xlarge\n",
|
|
" ec2_instance_type: m3.xlarge\n",
|
|
" num_ec2_instances: 5\n",
|
|
" s3_scratch_uri: s3://bucket/tmp/\n",
|
|
" s3_log_uri: s3://bucket/tmp/logs/\n",
|
|
" enable_emr_debugging: True\n",
|
|
" bootstrap:\n",
|
|
" - sudo apt-get install -y python-pip\n",
|
|
" - sudo pip install --upgrade simplejson"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|