1114 lines
100 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Random Sampling\n",
"==========================\n",
"\n",
"Credits: Forked from [CompStats](https://github.com/AllenDowney/CompStats) by Allen Downey. License: [Creative Commons Attribution 4.0 International](http://creativecommons.org/licenses/by/4.0/)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from __future__ import print_function, division\n",
"\n",
"import numpy\n",
"import scipy.stats\n",
"\n",
"import matplotlib.pyplot as pyplot\n",
"\n",
"from IPython.html.widgets import interact, fixed\n",
"from IPython.html import widgets\n",
"\n",
"# seed the random number generator so we all get the same results\n",
"numpy.random.seed(18)\n",
"\n",
"# some nicer colors from http://colorbrewer2.org/\n",
"COLOR1 = '#7fc97f'\n",
"COLOR2 = '#beaed4'\n",
"COLOR3 = '#fdc086'\n",
"COLOR4 = '#ffff99'\n",
"COLOR5 = '#386cb0'\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Part One\n",
"========\n",
"\n",
"Suppose we want to estimate the average weight of men and women in the U.S.\n",
"\n",
"And we want to quantify the uncertainty of the estimate.\n",
"\n",
"One approach is to simulate many experiments and see how much the results vary from one experiment to the next.\n",
"\n",
"I'll start with the unrealistic assumption that we know the actual distribution of weights in the population. Then I'll show how to solve the problem without that assumption.\n",
"\n",
"Based on data from the [BRFSS](http://www.cdc.gov/brfss/), I found that the distribution of weight in kg for women in the U.S. is well modeled by a lognormal distribution with the following parameters:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(72.697645732966876, 16.944043048498038)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"weight = scipy.stats.lognorm(0.23, 0, 70.8)\n",
"weight.mean(), weight.std()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's what that distribution looks like:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEPCAYAAABlZDIgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XPV97/H3bNp3S7I2G8nCeMGAF2xMIFhsLSUNkCYN\npaFsaUOeXtLetPeWpPe5T5x773ObtE/alKYlpE0TB3ohEFJqmrAFUELA2MY2XrBlS94tWbJs7Ysl\njWbuH+doNGdGM9YyozPL55XMo/P7zTkzX2N5vvNbzu8HIiIiIiIiIiIiIiIiIiIiIiIiIiIiInNy\nB9AENAOPRzjnCfP5vcAasy4L2A58CBwE/iro/BLgDeAI8DpQFPOoRUQkobiAFqAW8GAkhxUh59wJ\n/Nw8vg54P+i5HPOn26y/wSz/NfAX5vHjwDdiGbSIiCSe64FXg8pfMR/BvgvcG1RuAhaGnJMD7ARW\nTnFOhVkWERGbOeP42tXA6aDyGbPuUufUmMcujFZNB/A2RtcXGMmkwzzuIDwBiYiIDeKZUPzTPM8R\n4bpxYDVGgrkJaIjwHtN9HxERiSN3HF+7FVgUVF6E0QKJdk6NWResF/gZsA5oxGiVVADtQCVwbqo3\nr6+v9x89enSWoYuIpKWjwOWzvTieLZQPgKUYg/IZGGMlW0PO2Qo8YB5vBHowEkYpk7O3soHbMbq/\nJq550Dx+EHhpqjc/evQofr8/KR9f+9rXbI9B8dsfh+JPzkcyxw/Uz+VDP54tFC/wGPAaxnjI94FD\nwKPm809hzPC6E2M22CDwsPlcJbAFI+E5gaeBN83nvgE8D3weOAF8No5/BhERmaZ4JhSAV8xHsKdC\nyo9Ncd1+YG2E1+wCbptjXCIiEmPx7PKSWWpoaLA7hDlR/PZS/PZK9vjnInSGVSrxm32CIiIyDQ6H\nA+aQF9RCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGR\nmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBC\nERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmFBCERGRmIh3QrkDaAKagccj\nnPOE+fxeYI1Ztwh4G/gIOAD8SdD5m4EzwB7zcUesgxYRkZlzx/G1XcB3gNuAVmAnsBU4FHTOncDl\nwFLgOuBJYCMwBnwZ+BDIA3YBr2MkJz/wt+ZDUkzPSA+9o71kujLJdmeT487B4/TYHZaITEM8E8oG\noAU4YZafA+7GmlDuAraYx9uBImAh0G4+AAbMa6oxEgqAI15By/zz+rwc7DrIrs5dnOw/Gfb8orxF\nbKraRH1hPQ6H/upFElU8E0o1cDqofAajFXKpc2qAjqC6WoyusO1BdV8CHgA+AP4c6IlJxDLvPjj3\nAW+deYsh71DEc04PnOaZI8+wKG8Rt9TcQl1B3TxGKCLTFc8xFP80zwv9yhl8XR7wE+BPMVoqYHSL\n1QGrgbPAt+YQo9jE5/fx2qnX+M8T/xk1mQQ7PXCaLU1beOXkK/j8vjhHKCIzFc8WSivG4PqERRgt\nkGjn1Jh1AB7gReAZ4KWgc84FHf8L8HKkADZv3hw4bmhooKGhYVqBS3x5fV7+4/h/sP/C/imfL88u\nx4+fYe8wA2MDYc9v79jO4Ngg9yy5B7cznr/CIqmtsbGRxsbGmL1ePDuk3cBh4FagDdgB3Ef4oPxj\n5s+NwLfNnw6MsZULGIPzwSoxWiaYz60Hfn+K9/f7/dNtJMl8GR0f5bnm5zjWd8xS73F6WFe2jrXl\naynPLg/Utw228faZt2nubQ57rfrCeu69/F4yXBlxj1skHZhjlLPOC/Ee4fwtjCThAr4P/BXwqPnc\nU+bP72BM/R0EHgZ2AzcCvwL2MdkF9lXgVeBHGN1dfuC4+XrBYy4TlFAS0H8c/w/2dO6x1OV6cvnc\nFZ+jKrcq4nUn+0/yQssLYS2WRXmLeGD5A5oJJhIDiZ5Q7KSEkmA+6vqIF1pesNSVZJZw/7L7Kckq\nueT13SPdPN30NF0jXZb61aWrubvubs0AE5mjuSYU3Skv86J3pJeXj1uHuxZkLeDzKz8/rWQCUJxZ\nzCMrH6Eip8JS/+H5D9nVuStmsYrI7CihSNz5/D5+euynXBy/GKhzOpx8pv4z5HpyZ/RaeZ48Hlr+\nEAuyFljqXzn5CmcGQud8iMh8UkKRuHv37LthNyzeVnMblbmVs3q9LHcW9y691zJuMu4f5/mW56ec\nFSYi80MJReKqf7SfX7b90lJXX1DPxoqNc3rd8uxy7q6721LXN9rHz078bE6vKyKzp4QicfXLtl/i\n9XkD5Rx3DvcsuQenY+6/eqsWrOL6iustdYe6D3G4+/CcX1tEZk4JReKm62IXuzt3W+purr6Z/Iz8\nmL3HbYtuC5tu/LOTP2NkfCRm7yEi06OEInHzduvbliVSijOLWVO2JsoVM+dyuPhk7SdxBM107Bvt\n4+0zb8f0fUTk0pRQJC7ah9rDlla5ufrmuCyVUplbGdb1tb1jO22DbTF/LxGJTAlF4uLN029ayguz\nF7Jqwaq4vV9DdQNFGUWBsh8/Lx9/WYtIiswjJRSJuTMDZ8LW3rql5paYDMRHkuHK4BO1n7DUnR06\ny4ELB+L2niJipYQiMbe9Y7ulvChvEVcUXRH3911atJSVJSstdW+decsyy0xE4kcJRWJqYGyAj7o+\nstTdVHXTvK2zdVvNbZaWUM9oDzvP7ZyX9xZJd0ooElO7zu2yjFuUZJZQX1g/b+9fklXCteXXWup+\n1fYrLnovRrhCRGJFCUViZtw3zgfnPrDUrV+4Pq5jJ1O5qeomMpyTe6QMe4d5t/3deY1BJB0poUjM\nNPU00T/WHyh7nB5Wl66e9zjyPHl8rPJjlrpt7dvoG+2b91hE0okSisTMjo4dlvI1pdeQ7c62JZbr\nK663rGTs9Xl57+x7tsQiki6UUCQm2ofaw1YU3lC+waZoINOVyaaqTZa6Dzo/0GrEInGkhCIxETp2\nUptfS3lOeYSz58fasrXkeybXDfP6vLzf/r6NEYmkNiUUmTOvzxt2A+GGhfa1Tia4nW5uqLzBUrej\nYwdD3iGbIhJJbUooMmfNPc2W3Rhz3DksK1pmY0ST1patJdc9OZYy6htle/v2KFeIyGwpocic7buw\nz1JeVbIKl9NlUzRWGa4Mrq8MXzgyOAGKSGwoocicDHuHOdJzxFJ3VelVNkUztfXl68lyZQXKF8cv\nsrNDd8+LxJoSiszJoe5DjPvHA+XizGJqcmtsjChcpiszbMvh9zve1xpfIjGmhCJzsu+8tbvr6gVX\nz9u6XTNx3cLrLHfPD44Nhu3XIiJzo4Qis9Y72suJ/hOWuqsWJFZ314RsdzZry9Za6ra1b8Pv99sU\nkUjqUUKRWQudKlyVW0VpdqlN0VzadRXXWbYKPjd8jqO9R22MSCS1KKHIrE3V3ZXIijOLw/ZLea9d\ny7GIxIoSiszK+eHzdAx3BMoOHFxZcqWNEU1P6N7zx/qO0T7UblM0IqlFCUVm5VD3IUu5rqCO/Iz8\nCGcnjpq8GhbnLbbUbWvfZlM0Iqkl3gnlDqAJaAYej3DOE+bze4E1Zt0i4G3gI+AA8CdB55cAbwBH\ngNeBophHLZfU1N1kKS8vXm5TJDMXeqPj/gv76R/tj3C2iExXPBOKC/gORlJZCdwHrAg5507gcmAp\n8AXgSbN+DPgycCWwEfgvwMQn1lcwEsoVwJtmWeZR32gfrYOtlrpkSijLipZRklkSKPv8vrDFLUVk\n5uKZUDYALcAJjATxHHB3yDl3AVvM4+0YrY2FQDvwoVk/ABwCqqe4ZgtwT+xDl2gOdx+2lKtzqynI\nKLApmplzOpxct/A6S92uzl260VFkjuKZUKqB00HlM0wmhWjnhN5mXYvRFTaxot9CYGI0uMMsyzxK\n5u6uCdeUXWO50XFgbICDXQdtjEgk+bnj+NrTvWMs9Lbq4OvygJ8Af4rRUpnqPSK+z+bNmwPHDQ0N\nNDQ0TDMkiWTYO8zx/uOWumRMKFmuLFaXrmbHucldJnd07ODq0sSe+iwSS42NjTQ2Nsbs9eKZUFox\nBtcnLMJogUQ7p8asA/AALwLPAC8FndMBVGB0i1UC5yIFEJxQJDaae5rx+X2B8oKsBZRll9kY0ext\nWLjBklDODJ6hdaCV6rzQhrRIagr9ov31r399Tq8Xzy6vDzAG22uBDOBeYGvIOVuBB8zjjUAPRsJw\nAN8HDgLfnuKaB83jB7EmG4mz0O6uFcWh8yySR2l2KfUF9Za6HR07IpwtIpcSz4TiBR4DXsNIDD/G\nGFx/1HwA/Bw4hjF4/xTwx2b9DcD9wM3AHvNxh/ncN4DbMaYN32KWZR6M+cZo7m221CVjd1ew0J0l\nD3Qd0L7zIrMUzy4vgFfMR7CnQsqPTXHdr4mc7LqA2+YYl8zCsd5jjPnGAuV8Tz5VuVU2RjR3S4uW\nUpxZTPdINwDj/nF2d+7mpqqbbI5MJPnoTnmZttCNtJYVL8PpSO5fIafDyfry9Za6Xed2WcaJRGR6\nkvvTQOaN3++npbfFUpco+8bP1ZqyNbidk4313tFemnuao1whIlNRQpFp6bzYSe9ob6DsdripLai1\nL6AYynZns6pklaVu5zltESwyU0ooMi0tPdbWSW1BLR6nx6ZoYi+026ult4Wui102RSOSnJRQZFpC\nZ3ctLVxqUyTxUZ1XHTbBQOt7icyMEopc0sj4CCf7T1rqLi+63KZo4ie0lbLn/B7LrDYRiU4JRS7p\neN9xy6ynkswSFmQtsDGi+Liy5EqyXFmB8rB3WOt7icyAEopcUuiMp1RsnQBkuDJYXbraUqfBeZHp\nU0KRqPx+f8qPnwS7tvxaS/nMwBltESwyTUooElXncCd9o32BcipNF55KaXYpSwqWWOo0OC8yPUoo\nElVo6yTVpgtPZV35Okt53/l9jIyP2BSNSPJQQpGoQu+OT+XurgnLi5aT58kLlEd9o+y/sN/GiESS\ngxKKRDQ6Psqp/lOWulQdkA/mcrpYU7bGUvfBuQ/w+6e7Z5xIelJCkYhO9p9k3D8eKBdnFqfkdOGp\nrCuzdnu1D7XTOtga4WwRASUUieJY3zFLOXSwOpUVZRaFde9pcF4kOiUUiehYb0hCKUyfhALhU4gP\ndB1g2DtsUzQiiU8JRaY0MDZAx3CHpa4uv86maOyxtGgpBRkFgbLX52Xv+b02RiSS2JRQZEqhrZOq\n3CpyPDk2RWMPp8MZNpayq3OXBudFIlBCkSml8/hJsDVla3DgCJQ7hzs5NXAqyhUi6UsJRcL4/f7w\nhJJm4ycTCjIKWFZs3ZlSg/MiU1NCkTAXLl6wLrfidLM4b7GNEdkrdHD+YNdBBscGbYpGJHEpoUiY\no31HLeXL8i+z7LmebpYULKE4szhQHveP8+H5D22MSCQxKaFImLDpwmk6fjJhysH5c7sse8SIiBKK\nhBj3j3O877ilrr6w3qZoEsfqstU4HZP/XLpGujjRd8K+gEQSkBKKWLQNtDHqGw2Uc9w5lGeX2xhR\nYsjz5LGyeKWlToPzIlbREsrrQcdfjXcgkhiO91tbJ0sKlli+maez0GXtm3qa6B/ttykakcQT7ZOi\nLOj4s/EORBJD6PhJXUF63R0fTW1+LaVZpYGyz+9jd+duGyMSSSz66ikBY74xTg+cttQpoUxyOBxh\nU4h3dWpwXmRCtISyBNgKvAzUmT8nHlun+fp3AE1AM/B4hHOeMJ/fCwRvQvGvQAcQurPRZuAMsMd8\n3DHNWOQSTg+ctixXX5hRaJkuK3BN6TWWKdR9o3009zRHuUIkfUS7ueDuoONvhTw3ncWMXMB3gNuA\nVmAnRiI6FHTOncDlwFLgOuBJYKP53A+AfwB+NMV7/635kBgKnd21pGAJDocjwtnpKdudzaqSVZb7\nUHae2xl2N71IOoqWUBqDjifGUzpn8NobgBbghFl+DiNJBSeUu4At5vF2oAioANqBd4DaCK+tT7k4\nCE0o6u6a2vry9ZaE0tLbQvdIt1pzkvaidXk5MLqXzgNHzMd54GvTfO1qILhD/oxZN9NzpvIljC6y\n72MkIZmjkfERWgesOxLWFtTaE0yCq86rpjKn0lK369wum6IRSRzRWihfBm4A1gMTX12XAN8F/oxL\ndzlNd43v0NbGpa57Evhf5vH/xuiO+/xUJ27evDlw3NDQQENDwzRDSj8n+0/iD/pPX5pVatkLRKzW\nL1zP1uOTQ4m7O3fTUN2Q1kvUSPJpbGyksbExZq8XrevoQ+B2wru5yoA3gNWXeO2NGC2ciUHzrwI+\n4JtB53wXo2vtObPcBGzCGIwHo8vrZeCqCO8R7Xm/9q2YvtdOvca29m2B8vry9Xyi9hM2RpTYRsdH\n+daH32JkfCRQ9ztLfoerS6+2MSqRuTHHTGc9pBCty8vN1GMmnURv2Uz4AGOwvRbIAO4lfHbYVuAB\n83gj0MNkMokkuK/hU4TPApNZ0PjJzGS4Mlhdav1OtePcDpuiEUkM0RLK2Cyfm+AFHgNeAw4CP8YY\nkH/UfAD8HDiGMXj/FPDHQdc/C7wHXIExzvKwWf9NYB/GGMomjK45mYOhsSHah9otdbX5tfYEk0TW\nl6+3lM8MnOHs4FmbohGxX7SmzTgwFOG5bKbXSrGTurym6WDXQZ5veT5Qrsip4IurvmhjRMljS9MW\nS+tubdla7qq7y8aIRGYvnl1eLiA/wiPRk4nMgLq7Zm9D+QZLed+FfQx7h22KRsRe0RJKNkZ30ncw\nuqiURFKUEsrsXVF8hWU2nNfn1eZbkraiJZQtwDrgAMYd7aF3y0sK6B/t5/zF84GyAweL89N3u9+Z\ncjlcYet77ezYqfW9JC1FSygrgPsxpvZ+GrhpXiKSeXWi/4SlXJVbRZYry55gktTasrVhm2+Frtos\nkg6iJRRvhGNJIerumrs8Tx5Xllxpqdvesd2maETsEy2hXA30Bz2uCjrui39oMh+UUGIjdHC+ubeZ\nCxcv2BSNiD1mMsvLHXSsNTlSQM9ID90j3YGy0+FkUd4iGyNKXjV5NVTlVlnqdnToRkdJL9pgK42d\n6DthKdfk1pDhyrAnmCTncDi4buF1lro9nXssS7OIpDollDQWun+8urvm5sqSK8l15wbKo75RTSGW\ntKKEkqb8fn9YC0XL1c+N2+kOm0K8o2OHphBL2lBCSVPdI930jvYGyi6Hi5q8GhsjSg3Xll9rmUJ8\n4eIFjvYetTEikfmjhJKmQmd3Lc5fjMfpsSma1JGfka8pxJK2lFDSVOgNjVpdOHZCB+dbels4N3zO\npmhE5o8SShry+/26/ySOavJqqMm1dh++3/6+TdGIzB8llDR0/uJ5BsYGAmWP0xN2D4XMzfWV11vK\ne8/vZXBs0KZoROaHEkoaCm2dXJZ/mfZCj7HlxcspzCgMlMf94+w8t9PGiETiTwklDam7K/5cDhcb\nKzZa6nZ07GDMN53NTkWSkxJKmvH5fUoo82RN2RoyXZmB8pB3iP0X9tsYkUh8KaGkmY6hDi6OXwyU\ns1xZVORU2BhR6spyZbG2bK2lblv7NrQ1taQqJZQ0E9o6qS2otdyIJ7F13cLrcARt0d053Elzb7ON\nEYnEjz5J0syxPuvGT+ruiq+izKKwGx3fPfuuTdGIxJcSShoZ941zsv+kpU4JJf4+VvkxS/lk/0lO\n9Z+yKRqR+FFCSSOtg62WWUZ5njzKsspsjCg9VOVWUV9Qb6lTK0VSkRJKGplqdpfD4YhwtsTSDVU3\nWMqHew5rORZJOUooaUTThe1Tl18XthqBWimSapRQ0sSYb4zTA6ctdUoo88fhcHBj5Y2Wuv0X9tMz\n0mNTRCKxp4SSJk73n2bcPx4oF2UUUZxZbGNE6Wd58XIWZC0IlH1+H++1v2djRCKxpYSSJo72WTd5\nUutk/jkdTm6otI6l7D63m/7RfpsiEomteCeUO4AmoBl4PMI5T5jP7wXWBNX/K9ABhK5VUQK8ARwB\nXgeKYhhvyjrWa73/ZEnhEpsiSW9XL7iagoyCQNnr96qVIikjngnFBXwHI6msBO4DVoSccydwObAU\n+ALwZNBzPzCvDfUVjIRyBfCmWZYohsaGODt01lKnFoo93E532FjKznM7LdsJiCSreCaUDUALcAIY\nA54D7g455y5gi3m8HaO1MbGw1DtA9xSvG3zNFuCemEWcokLvjq/IqSDPk2dTNLKmbA35nvxA2evz\nsq19m40RicRGPBNKNRA8reiMWTfTc0ItxOgKw/y5cA4xpoXQhLKkQN1ddvI4PWFjKTs6dmgDLkl6\n8dxVabpLqobeWTeTpVj90c7fvHlz4LihoYGGhoYZvHRq8Pv9HO21DsjXF9ZHOFvmy7rydbxz9p1A\nEhnzjfF++/vcuuhWmyOTdNLY2EhjY2PMXi+eCaUVWBRUXoTRAol2To1ZF00HRrdYO1AJRLzdODih\npKuukS56R3sDZZfDxeL8xTZGJGC2Uipu4PXTrwfqtndsZ2PFRnI9uTZGJukk9Iv217/+9Tm9Xjy7\nvD7AGGyvBTKAe4GtIedsBR4wjzcCPUx2Z0WyFXjQPH4QeCkGsaas0NbJZfmX4XF6bIpGgl1bfi05\n7pxAedQ3yq/P/trGiETmJp4JxQs8BrwGHAR+DBwCHjUfAD8HjmEM3j8F/HHQ9c8C72HM5joNPGzW\nfwO4HWPa8C1mWSIIGz/RdOGEkeHKCJvxtaNjB32jfTZFJDI3qbwyoD/dd8Yb94/z17v/mpHxkUDd\no1c+SmVupY1RSbAx3xhP7H2C/rHJmxuvLb+W3679bRujknRlLhY767ygO+VTWNtgmyWZ5LhzWJij\nSXGJxOP0sKl6k6Vud+duui522RSRyOwpoaSwsLvjC5Zou98EtKZ0jWVdNZ/fR2Nro30BicySPl1S\nWOiAvMZPEpPL6aKhusFSt+/CPjqGLjU/RSSxKKGkqGHvcNhy9bqhMXFdteAqyrKtu2e+cfoNm6IR\nmR0llBR1tPco/qB7PsuyyyjK1DqaicrpcHJrjfWmxpbelrBWpkgiU0JJUS29LZby0sKlNkUi07Ws\naFnYTaevn3odn99nU0QiM6OEkoJ8fh/Nvc2WuqVFSiiJzuFw8JuLftNS1zHcwYfnP7QpIpGZUUJJ\nQe1D7ZaFBjOcGSzKWxTlCkkU1XnVXLXgKkvdW2feYnR81KaIRKZPCSUFhXZ3LSlcgtsZz2XbJJZu\nrbkVl8MVKA+MDfDu2XdtjEhkepRQUlBzT0h3l8ZPkkpRZhEbKzZa6t49+y7dI1NtDySSOJRQUsyQ\nd4gzA9ZFnS8vutymaGS2Pl75ccvCkV6/l9dOvWZjRCKXpoSSYkKnC5dnl1OYUWhjRDIbWe4sbl90\nu6WuqbsprPUpkkiUUFJMS0/IdGHN7kpa15ReQ3WudQPTV06+gtfntSkikeiUUFLIlNOFNX6StJwO\nJ5+o/YSlrmukS/vPS8JSQkkhbYNtDHmHAuVMV6amCye5qtwqri2/1lL3y7ZfaoBeEpISSgo51H3I\nUq4vqMfldEU4W5LFLTW3kO3ODpS9Pi8vH3+ZdN/vRxKPEkoKaepuspSXFy+3KRKJpRx3TtgA/bG+\nY+w9v9emiESmpoSSIjqHO7lw8UKg7HQ4uaLoChsjklhaU7qG2vxaS92rp15lYGzAnoBEpqCEkiJC\nWyd1+XVkubNsikZizeFw8Mm6T+J2TK54cHH8Iq+cfMXGqESslFBSRFh3V4m6u1LNgqwFNNQ0WOo+\n6voo7O9exC5KKCmgb7SP1sFWS92yomU2RSPxdH3F9VTkVFjqth7fqq4vSQhKKCkg9BtqTW4NBRkF\nNkUj8eRyuLi77m6cjsl/ukPeIc36koSghJICNLsrvVTmVrKpapOl7nDPYfac32NTRCIGJZQkN+wd\n5kT/CUudEkrqu7HqximXZem62GVTRCJKKEnvSM8RyxaxpVmllGaX2hiRzAeXw8Xv1P8OHqcnUDfm\nG+PFoy9qrS+xjRJKkjtw4YClvKJ4hU2RyHxbkLWA31xs3TK4dbCVN8+8aVNEku6UUJLY4NggR/uO\nWupWlqy0KRqxw7qydWE3sG5r3xa2DI/IfFBCSWIHuw6GdXeFTimV1OZwOLin7p6wWX0vHXtJC0jK\nvIt3QrkDaAKagccjnPOE+fxeYM00rt0MnAH2mI87YhpxEtl/Yb+lfHXp1TgcDpuiEbvkeHL43frf\ntUwlHhkf4YWWFxjzjdkYmaSbeCYUF/AdjA/8lcB9QGgH/53A5cBS4AvAk9O41g/8LUbyWQO8Grc/\nQQLrGenh1MApS92qklU2RSN2W5S/iNtqbrPUtQ226f4UmVfxTCgbgBbgBDAGPAfcHXLOXcAW83g7\nUARUTOPatP8aHto6qcmroSSrxKZoJBFcX3F92AoJ+y7s473292yKSNJNPBNKNXA6qHzGrJvOOVWX\nuPZLGF1k38dIQmknNKFcteAqmyKRROFwOLhnyT0syFpgqX/j9Bsc6TliU1SSTuKZUKbbzp5pa+NJ\noA5YDZwFvjXD65Ne+1A754bPBcoOHFxZcqWNEUmiyHZnc9/S+8h0ZVrqXzz6ouV3RiQe3Jc+ZdZa\ngeD9ZxdhtDSinVNjnuOJcm3wv4p/AV6OFMDmzZsDxw0NDTQ0NEwr8EQX2jqpL6wnz5NnUzSSaEqz\nS/ndy3+Xfzv8b/jN73Uj4yM8c/gZPr/y8xRmFNocoSSKxsZGGhsbY/Z68RyLcAOHgVuBNmAHxuB6\n8AT5O4HHzJ8bgW+bP6NdW4nRMgH4MrAe+P0p3t+fioOR4/5x/n7v39M32heo+9SST3FN6TU2RiWJ\naFv7Nl479Zqlriy7jEdWPGLZUlhkgjlLdNZ5IZ5dXl6MZPEacBD4MUZCeNR8APwcOIYxAP8U8MeX\nuBbgm8A+jDGUTRhJJW009zRbkonH6dHaXTKljQs3sq5snaWuc7iTZ488q+nEEhepPFsqJVsoTx9+\nmqO9k3fHry1by111d9kYkSQyn9/H8y3Ph61IfUXRFXz28s/idsaz11uSTSK3UCTGui52WZIJwLXl\n19oUjSS02ktAAAAPaklEQVQDp8PJp+s/zeL8xZb6Iz1H+MnRnzDuG7cpMklFSihJ5INzH1jK1bnV\nVOVW2RSNJAuP08N9S++jPLvcUt/U3aSkIjGlhJIkxnxjYRsoqXUi05Xtzub+ZfdTkmm9+fVQ9yFe\nPPaikorEhBJKkjjYdZBh73CgnOXKYtUCLbUi01eQUcBDKx4KSyoHuw7yXPNzjI6P2hSZpAollCQR\n2t21unS1ZXMlkekoyCjgwRUPUpxZbKlv7m3m6cNPM+QdsikySQVKKEmgbbCN0wOnLXXq7pLZKswo\n5MHl4Unl9MBpfnjoh5Zp6SIzoYSSBN5pe8dSriuo0za/MidFmUU8suIRFuYstNSfGz7H9z76Hq0D\nrTZFJslMCSXBdQx1hO2+d33F9TZFI6kkPyOfh5c/zGX5l1nqB8YG+MGhH4Qt8SNyKUooCe5Xbb+y\nlCtzKllauNSmaCTVZLmzuH/Z/WGrLXj9Xl48+iK/OP0Lxv2aASbTo4SSwDqHO/mo6yNL3abqTdqV\nUWLK4/Tw2cs/yw2VN4Q99+uzv+ZHTT/SuIpMixJKAgsdO1mYszBsAyWRWHA6nNy+6HbuqbsHl8Nl\nee5k/0m+e+C7tPS02BSdJAsllAR14eKFsD7sm6puUutE4mp12WoeXP5g2HYIQ94hnjnyDD8/8XPd\nryIRKaEkqLfOvBXYywKMZcdXFK+wMSJJF4vzF/PFVV9kScGSsOd2nNvBdw98l5P9J22ITBKdEkoC\nOtZ7LGzs5Kaqm3A69Ncl8yPPk8f9y+7n5uqbcYQsPts10sUPDv2An534mWX1BpFU7j9JyuXrvT4v\nTx54kgsXLwTqKnMq+aMr/0gJRWxxsv8kLx17ie6R7rDnct253L74dq5ZcI26Y1PAXJevT+XfgKRM\nKO+0vcObZ9601P3hyj+kJq/GpohEjC2Ef3H6F+w8t3PK5xflLeL2RbeHLZMvyUUJJbKkSyjdI938\n4/5/xOvzBuq0gZYkkmO9x3j5xMtTtlYAlhcv59aaWynLLpvnyCQWlFAiS6qE4vf7ebb5WY70HAnU\nZbuz+dJVXyLHk2NjZCJWY74x3j37Lu+0vTPlTY8OHKxasIqPV308bA8WSWxKKJElVUJ57+x7vH76\ndUvdJ2s/ybrydRGuELFX18UuXj31quVLUKgVxSu4ofIGddkmCSWUyJImoZzoO8GWpi2WacI1uTU8\nsvIRDcRLwjvRd4LXT79O22BbxHOqc6vZWLGRlcUrcTldEc8TeymhRJYUCaV/tJ+nPnqKgbGBQF2W\nK4svXPkFSrJKolwpkjj8fj8Huw/S2NpI53BnxPNyPblcs+Aa1pSt0ThLAlJCiSzhE4rX5+VHh3/E\nqf5Tlvr7lt7HsmItsSLJx+f30dTdxK/afkX7UHvUc2vyarhqwVWsLF5Jfkb+PEUo0SihRJbQCWXM\nN8aPm39MS691faSbqm7ilppbbIpKJDb8fj9He4/yfsf7Yb/joRw4qC2oZUXxCpYVLaMws3CeopRQ\nSiiRJWxCGR0f5dnmZzned9xSv6RgCfcvu1/jJpJSOoc72dGxg30X9jEyPnLJ8ytyKlhatJT6gnpq\n8mpwO93zEKWAEko0CZlQhr3DPHvkWU4NWLu5SrNKeXjFw+R6cm2KTCS+RsdHOdh9kD2de6a9FpjH\n6eGy/Muoza9lcf5iqnKrlGDiSAklsoRLKMf7jvPvx/49bG+J8uxyHlj+QNgKryKpqnukm48ufMSB\nrgOXHGsJ5na4qcytpDq3muq8aqpyqyjOLFarPkaUUCJLmIQy5hvjrTNvsa19W9hzlTmV/MGyP9DN\ni5K2zg+fp6mnicPdhzk9cHrG13ucHhbmLKQip4Ky7DLKssooyy4jz5On9cVmSAklMtsTyuj4KLs7\nd/Ne+3tT7nhXk1fD5674HNnubBuiE0k8g2ODtPS2cLT3KMf6jlmm089UhjODkqwSFmQtoCSzhKLM\nosCjIKMAj9MTw8hTQ6InlDuAbwMu4F+Ab05xzhPAbwFDwEPAnktcWwL8GLgMOAF8FuiZ4nVtSSh+\nv5+O4Q4OdR1i57mdDHmHpjzvYxUf45aaW9QfLBKB3++nc7iTk/0nOdl/klMDp2K6FXGOO4eCjALy\nPfnkZ+ST58kjz5NHrieXXHcuuZ5cctw5ZLmzwnaxTFWJnFBcwGHgNqAV2AncBxwKOudO4DHz53XA\n3wMbL3HtXwPnzZ+PA8XAV6Z4/3lJKOP+cc4Pn6d9qJ3WwVaO9ByhZ2Sq/GYozCjkniX3UFdQF/Gc\nxsZGGhoa4hDt/FD89krV+P1+P32jfbQOttI62ErbYBvtg+0Mj8d/T5YsVxbZ7myyXFlkubPIdmWT\n6cok05VJljuLDGcGGa4MMl2Z7HlvDzduupEMZwYep8fycDvduByuhO2Km2tCiefX4w1AC0YrAuA5\n4G6sCeUuYIt5vB0oAiqAuijX3gVsMuu3AI1MnVBoG2wjUlKZWObEjx/j/8b/fH5f4OH1e/H6jMfo\n+CgXxy9ycfwiQ2ND9I720jfaR+9o75QL5IVyO9ysLV/LLdW3kOXOinpuqn4gJAvFb69I8TscDgoz\nCynMLGRlyUrATDJjfbQPttM53Gk8LnZyfvg8o77YbVU88W9/WvFvbeTYwmMRn3fgwO1043a4jQTj\ndOF2GD9djqBHUNnpcOJ0OC3HTocTJ5PHDocjUJ44djgcOHAYdTiMslkXKAf9nKt4JpRqIHiE7QxG\nK+RS51QDVVGuXQh0mMcdZnlK3/voezMOOtYynBlsWLiBjRUbNYtLJMYcDgeFGYUUZhRaVpfw+/0M\njA3QNdLFhYsX6B7ppmekJ/AYGBuwrJ03n/z4GfONMcYYXPq7aFKJZ0KZ7t/WdNKiI8Lr+WfwPvPG\n5XBRX1jP8uLlrCheoUF3kXnmcDjIzzDGRi7Lvyzs+XH/OANjA/SN9jEwOkD/WD8DYwMMjA0wODbI\nkHco8HO6LROJr43Aq0Hlr2KMeQT7LvB7QeUmjBZHtGubMLrFACrN8lRamEw4euihhx56XPoRfZ0c\nG7mBo0AtkAF8CKwIOedO4Ofm8Ubg/WlcOzEYD8bYyTdiHrmIiCSc38KYrdWC0coAeNR8TPiO+fxe\nYO0lrgVj2vAvgCPA6xgD+SIiIiIiIolhEfA28BFwAPgTs74EeIPkacm4MG7qfNksJ1P8RcBPMKZ1\nH8SYkZcs8X8V43dnP/D/gEwSO/Z/xZjduD+oLlq8XwWaMcYaf2OeYoxmqvj/BuN3Zy/wUyB4/fpk\niH/CnwM+jL+PCckS/5cw/g4OYL0BPdHij7sKYLV5nIfRTbYCY6zlL8z6x0n8sZY/A/4N2GqWkyn+\nLcAj5rEb4wMhGeKvBY5hJBEwVmB4kMSO/ePAGqwfCJHiXYkx/ujB+LO2AHavojhV/LczGdc3SL74\nwfhi+ypwnMmEkizx34zxhWRiLZqJrTQTMf559xLGHfYTM8bASDqRZoMlghqMcaGbmWyhJEv8hRgf\nyqGSIf4SjC8gxRiJ8GWMD7dEj70W6wdCpHhDZ1a+ijH5xW61TP0NH+BTwDPmcTLF/wJwNdaEkizx\nPw9MtavfjONPtWxTi5F9tzODGyATwN8B/x2juTwhWeKvAzqBHwC7gX8GckmO+LuAbwGngDaMNeHe\nIDliDxYp3iqMm4InTNw4nMgeYXLmZ7LEfzdGbPtC6pMl/qXATRizbBuBa836GcefSgklD3gR+FOg\nP+S5iTnWiei3gXMY4yeRbvJM5PjdGLPz/sn8OUj4UjiJGn898F8xvohUYfwO3R9yTqLGHsml4k3k\nP8v/AEYxxrIiSbT4c4C/BL4WVBftZu1Eix+Mf8PFGK2P/47RYokkavypklA8GMnkaYwuLzC+qQXf\nAHnOhrim42MY65MdB57FaHo+TfLEf8Z87DTLP8FILO0kfvzXAu8BFwAvxoDw9SRH7MEi/a60YvTt\nT6gx6xLRQxj3pX0uqC4Z4q/H+EKyF+PfcA2wC6OVmAzxg/Hv96fm8U6MnpJSZhF/KiQUB/B9jNlF\n3w6q34oxwIr58yUS019i/KXVYawa8BbwByRP/O0Y665dYZZvw5g19TKJH38TxreybIzfo9swfo+S\nIfZgkX5XtmL8TmVg/H4tBXbMe3SXdgfGN+O7geB1TpIh/v0YyaPOfJzB+ELVQXLED8bvy8QYyhUY\n8Z4neeKPqRsxMuqHGN1GezB+QZPxBshNTM7ySqb4r8H4ZhM87TNZ4v8LJqcNb8Fo7SZy7M9ijPeM\nYiTyh4ke719izM5pAn5zXiOdWmj8j2BMSz3J5L/ffwo6P1HjH2Hyv3+wY1inDSdD/B6MXpH9GK2r\nhqDzEy1+EREREREREREREREREREREREREREREZFk9s+E70Qa6ofAp6eovwy4L8p15cDPzOOHgH+Y\nQVwLmVwTS2RepMKd8iJ2+iOMfSSiibT+UR3w+1GuewwjGUV7jUg6gG6su6CKxJUSioix7MeXzOO/\nA940j29hcin138BY92sXxuJ5uWZ9I7DOPP48xnL42zFaLsEtipuAd4GjTLZWvoGxP8UejEVNQ32G\nyRZKsE+YsZRgrCX1PsZKt/8H68KoW4neAhIRkRi7jskVVt/B+IB2Y6wg+0cYC+X9EmPNLzD2iPif\n5vHbGK2AKozFAYvMa38FPGGe80OMzbvA6B5rNo83Mbn/TagKrHtWPIiRoD5lvvbErob/CdxrHj+K\nNaHUYSQ3kXmhFoqIsY/LOiAfY3HCbRgrEd+IkWA2Yuxe9x5Ga+IBYHHQ9Q5gA0bS6cFYufgFJpcx\n9zO5YOMhJvcribbM+WXA2ZD3uAVj7bE7gV6zfqP5XmCs0xTsLMZKuCLzwm13ACIJYAyjdfEQRtLY\nh/HhfTnGoniXY2y8FW28I3SMIzRZjEZ5LpLg8/wY3WV1wDKMrrfpXJ+I+29IilILRcTwDvDfMFoZ\n7wBfxGi5gNFtdAPGeAUY4ydLg671Y6y2vInJLq9Pc+kP836MVtFUTjK5xwkYyeEkxrjKjzBaTGB0\nz33GPP69kNeoNK8RmRdKKCKGdzA+wLdhbFA1bNaBscXxQxhdSnsxWjHLQq5vA/4vxn4Rv8Zo8fQG\nPe+f4ngvMI6x9ULooHw7RmLKCbrGjzHo/zmMbq46jB0n/8x8jfqQ99yAMd4iIiJJZmLmlxtjhtXd\nc3y9zUwOuEeSHXT8e8C/B5X/DVgzxxhERMQGf4MxaH8I6+6hs1XGpW9OvBGjdbIXYwrzErM++KZI\nEREREREREREREREREREREREREREREZFY+P86jD7vAkkpbAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d9ead90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"xs = numpy.linspace(20, 160, 100)\n",
"ys = weight.pdf(xs)\n",
"pyplot.plot(xs, ys, linewidth=4, color=COLOR1)\n",
"pyplot.xlabel('weight (kg)')\n",
"pyplot.ylabel('PDF')\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`make_sample` draws a random sample from this distribution. The result is a NumPy array."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def make_sample(n=100):\n",
" sample = weight.rvs(n)\n",
" return sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's an example with `n=100`. The mean and std of the sample are close to the mean and std of the population, but not exact."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(76.308293640077437, 19.995558735561865)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample = make_sample(n=100)\n",
"sample.mean(), sample.std()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to estimate the average weight in the population, so the \"sample statistic\" we'll use is the mean:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def sample_stat(sample):\n",
" return sample.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One iteration of \"the experiment\" is to collect a sample of 100 women and compute their average weight.\n",
"\n",
"We can simulate running this experiment many times, and collect a list of sample statistics. The result is a NumPy array."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def compute_sample_statistics(n=100, iters=1000):\n",
" stats = [sample_stat(make_sample(n)) for i in range(iters)]\n",
" return numpy.array(stats)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The next line runs the simulation 1000 times and puts the results in\n",
"`sample_means`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"sample_means = compute_sample_statistics(n=100, iters=1000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the distribution of the sample means. This distribution shows how much the results vary from one experiment to the next.\n",
"\n",
"Remember that this distribution is not the same as the distribution of weight in the population. This is the distribution of results across repeated imaginary experiments."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE+BJREFUeJzt3X2UXHV9x/H35AHLU7JJxRCSaBBJS5RKFGMqWqaUpuHY\nmtAWkBYbq8djT+Th1NpqtEc2teVgFUtthPZUwSCaNoqmwYcW5DCn2BqjyENCiCaRKBtDgprdhWpt\nCNs/fr9hb+Y3u5lN5t67M3m/zpkzd37zcL+/fbif+zS/C5IkSZIkSZIkSZIkSZIkSVLXmQPcCzwC\nbAGuju29QB/wQLxdlHnPSmA7sA1YXFShkqTinAqcE6dPAr4DnAVcC7yzyevnAw8Ck4G5wA5gQu5V\nSpISeS58nyAs7AGeBh4FZsXHlSavXwqsBQ4AuwjhsDDH+iRJIyhqzXwusADYGB9fBTwEfALoiW2n\nEXY31fUxHCaSpAIVEQ4nAZ8DriFsQdwMnE7Y5bQHuGGU9w7lXp0kKTEp58+fDNwB3A6sj237Ms9/\nHLgzTu8mHMSumx3bDnHGGWcM7dy5s/2VSlJ32wm8pNUX57nlUCHsNtoK3Jhpn5mZvhjYHKc3AG8E\njiNsWZwJbGr80J07dzI0NNS1t2uvvbb0Guyb/bN/3XcDzhjLAjzPLYfzgCuAhwmnrAK8F7icsEtp\nCHgMeHt8biuwLt4/A6zA3UqSVIo8w+FrNN8y+coo77ku3qSuNbVnGoMD/YXMa8rUHgb69xcyL3WX\nvI85aIyq1WrZJeSmm/sGrfdvcKCfRVeuP/wL22Dj6mVt+yx/f8eWZt83GO+G4v4zqSNVKpVCw8H/\nF0H4u2MMy3y/gSxJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJ\nShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgO\nkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqTEpLILkMaDqT3TGBzoL7sMadwwHCRgcKCfRVeu\nL2ReG1cvK2Q+0tFwt5IkKWE4SJISeYbDHOBe4BFgC3B1bJ8O3A18F7gL6Mm8ZyWwHdgGLM6xNknS\nKPIMhwPAnwIvBRYB7wDOAt5DCId5wD3xMcB84LJ4vwS4Kef6JEkjyHPh+wTwYJx+GngUmAW8AVgT\n29cA9aNzS4G1hFDZBewAFuZYnyRpBEWtmc8FFgDfAGYAe2P73vgY4DSgL/OePkKYSJIKVsSprCcB\ndwDXAE81PDcUbyNp+lxvb+9z09VqlWq1elQFSlK3qdVq1Gq1I35/3uEwmRAMnwLqJ5HvBU4l7Haa\nCeyL7bsJB7HrZse2RDYcJEmpxhXnVatWjen9ee5WqgCfALYCN2baNwDL4/RyhkNjA/BG4DjgdOBM\nYFOO9UmSRpDnlsN5wBXAw8ADsW0lcD2wDngr4cDzpfG5rbF9K/AMsILRdzlJknKSZzh8jZG3TC4c\nof26eJMklcjvEUiSEoaDJClhOEiSEoaDJClhOEiSEoaDJClhOEiSEoaDJClhOEiSEoaDJClhOEiS\nEoaDJClhOEiSEkVcCU5SWSoTqVQqhc1uytQeBvr3FzY/5cdwkLrZ0EEWXbn+8K9rk42rlxU2L+XL\n3UqSpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6S\npIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElK5B0OtwB7gc2Ztl6gD3gg3i7KPLcS2A5s\nAxbnXJskaQR5h8OtwJKGtiHgI8CCePtKbJ8PXBbvlwA3FVCfJKmJvBe+9wH7m7RXmrQtBdYCB4Bd\nwA5gYW6VSZJGVNaa+VXAQ8AngJ7Ydhphd1NdHzCr4LokSZQTDjcDpwPnAHuAG0Z57VAhFUmSDjGp\nhHnuy0x/HLgzTu8G5mSemx3bEr29vc9NV6tVqtVqWwuUpE5Xq9Wo1WpH/P4ywmEmYYsB4GKGz2Ta\nAHyGcLB6FnAmsKnZB2TDQZKUalxxXrVq1Zjen3c4rAXOB54PPA5cC1QJu5SGgMeAt8fXbgXWxftn\ngBW4W0mSSpF3OFzepO2WUV5/XbxJkkrk9wgkSQnDQZKUMBwkSQnDQZKUMBwkSQnDQZKUMBwkSYlW\nwuGeFtskSV1itC/BHQ+cAJwCTM+0T8HRUiWpq40WDm8HriEMpX1/pv0pYHWeRUmSyjVaONwYb1cD\nHy2mHEnSeNDK2EofBV4DzG14/W15FCRJKl8r4XA78GLgQeBgpt1wkKQu1Uo4vBKYj8NnS9Ixo5VT\nWbcQLtAjSTpGtLLlcArhAjybgJ/HtiHgDXkVJUkqVyvh0Jt3EZKk8aWVcKjlXYQkaXxpJRyeZvhg\n9HHA5Ng2Ja+ipKk90xgc6C+7DOmY1Uo4nJSZnkA41rAon3KkYHCgn0VXri9sfhtXLytsXlInGOuo\nrM8C64ElOdQiSRonWtly+L3M9ATC9x5+lk85kqTxoJVw+B2Gjzk8A+wCluZVkCSpfK2Ew5vzLkKS\nNL60csxhDvAF4Ml4uwOYnWdRkqRytRIOtwIbCNd1OA24M7ZJkrpUK+FwCiEMDsTbJ4EX5FiTJKlk\nrYTDj4E3ARMJxyiuAH6UZ1GSpHK1Eg5/DFwKPAHsAS6JbZKkLtXK2Up/BfwRsD8+ng58GHhLXkVJ\nksrVypbDyxkOBoCfAK/IpxxJ0njQSjhUCFsLddMJxx8kSV2qld1KNwBfB9YRguIS4G/yLEqSVK5W\nwuE24H7gAsIwGhcTrgwnSepSrYQDwCPxJkk6Box1yG5J0jEg73C4BdgLbM60TQfuBr4L3AX0ZJ5b\nCWwHtgGLc65NkjSCvMPhVtILA72HEA7zgHviY4D5wGXxfglwUwH1SZKayHvhex+HfkcCwmVG18Tp\nNUD9+oxLgbWE8Zt2ATuAhTnXJ0lqoow18xmEXU3E+xlx+jSgL/O6PmBWgXVJkqKyd9sMMXyVuZGe\nlyQVrNVTWdtpL3AqYSC/mcC+2L6bcGGhutmxLdHb2/vcdLVapVqt5lCmJHWuWq1GrVY74veXEQ4b\ngOXAB+P9+kz7Z4CPEHYnnQlsavYB2XCQJKUaV5xXrVo1pvfnHQ5rgfOB5wOPA+8HricMxfFWwoHn\nS+Nrt8b2rcAzwArcrSRJpcg7HC4fof3CEdqvizdJnagykUqlUsispkztYaC/8WRItUsZu5Ukdauh\ngyy6cv3hX9cGG1cvO/yLdMTKPltJkjQOGQ6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpITh\nIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpIThIElK\nGA6SpIThIElKGA6SpIThIElKGA6SpIThIElKGA6SpMSksgtQ55jaM43Bgf6yy5BUAMNBLRsc6GfR\nlesLmdfG1csKmY+k5tytJElKGA6SpIThIElKGA6SpIThIElKlHm20i5gEDgIHAAWAtOBfwVeFJ+/\nFPDcSUkqWJlbDkNAFVhACAaA9wB3A/OAe+JjSVLByt6tVGl4/AZgTZxeA3iyuySVoOwth68C3wLe\nFttmAHvj9N74WJJUsDKPOZwH7AFOIexK2tbw/FC8JXp7e5+brlarVKvVXAqUpE5Vq9Wo1WpH/P4y\nw2FPvH8S+ALhuMNe4FTgCWAmsK/ZG7PhIElKNa44r1q1akzvL2u30gnAyXH6RGAxsBnYACyP7cuB\nYgbykSQdoqwthxmErYV6DZ8G7iIcf1gHvJXhU1klSQUrKxweA85p0v4T4MKCa5EkNSj7VFZJ0jhk\nOEiSEoaDJCnhleAkdabKRCqVxkEW8jFlag8D/fsLmdd4YThI6kxDB71sbY7crSRJShgOkqSE4SBJ\nShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgOkqSE4SBJShgO\nkqSE4SBJShgOkqSE4SBJSngN6Q43tWcagwP9ZZchqcsYDh1ucKDfi6xLajt3K0mSEm45SNLhVCZS\nqVQKm92UqT0M9O8vbH7NGA6SdDhDBwvbfQvjYxeuu5UkSQnDQZKUMBwkSQmPObRRf38/r/7V1/LT\nn/1vIfN73nGTC5mPpGOP4dBGAwMD7HliLy9+fW8h89tdu7GQ+Ug69hgObTZh4iSOnza7kHlNmvy8\nQuYj6dgzHo85LAG2AduBd5dciyQdk8ZbOEwEVhMCYj5wOXBWqRUVbKBvc9kl5Kab+wb2r9N1e//G\naryFw0JgB7ALOAD8C7C0zIKKNrh7S9kl5Kab+wb2r9N1e//GaryFwyzg8czjvtgmSSrQeDsgPVR2\nAUdjwoQJ/PSp/fTd88Ej/ozBJx+n7+kftPTagSdbe50kjVVxI0m1ZhHQSzjmALASeBbILm13AGcU\nW5YkdbydwEvKLuJITSJ0YC5wHPAgx9gBaUlScxcB3yFsIawsuRZJkiRJnaAH+BzwKLAVeHVsvyq2\nbeHQ4xGdprF/iwin834TeCDev6q06o7OLxH6UL8NAFcD04G7ge8CdxF+Bp2oWf+uAT5E+H0+BHwe\nmFpWgUdhpN9d3Z8RjgVOL760thitf92wbBnpb7Nbli0ArAHeEqcnEf7Rfp2wcKmPOndKCXW1S7P+\n1YDfim0XAfcWX1bbTQD2AHOAvwX+Ira/G7i+rKLaKNu/32T4FPHr6fz+ZftGvP934DE6Nxyysv3r\npmVLXb1/L6SLli1Tge81aV8HXFBwLXkYqX9rgUvj9OXA7YVVlJ/FwH1xehswI06fGh93usXA15q0\nX0zn//4a+/ZZ4FfonnDI/m12y7IlK9u/rlm2nAN8A7gV+Dbwz8CJhE2iXmAjIQnPLae8o9asfycA\nLyJ8EfAHhC8BzhnpAzrILcCKOJ29MG6l4XGnyvYv607gDwqupd2yfVsK/F2c7pZwyPavW5YtWdn+\ndc2y5VzCEBr1/WI3Ah8ANgN/H9teRfO1704wUv++SljjBLiEsJnbyY4DnmR4E70xDH5SbDlt19i/\nuvcBdxRfTltl+3YCYWVmSnzuMeAXS6qrXRp/d92ybKlr7F/XLFtOJfwB1r0W+CLwZeD8TPsOOvOP\ntFn/vgQMZtoqhINJnWwpYR913TZC3wFm0vm7lRr7B/Bm4L+AXyi8mvbK9u1sYC/hb/YxworNLuAF\npVTWHo2/u6/QHcuWusb+jWnZMt7GVsp6grAJNC8+vhB4BPg3hvcLziOk448Lr+7ojdS/7Qz/gV5A\nOKunk11O2NdZtwFYHqeXA+sLr6i9Gvu3BPhzwj9mMZcEzE+2b5sJx4pOj7c+4BXAvnJKa4vG3916\numPZUtfYvx100bLl5YRTrrKnBU4GPkX4Y70fqJZVXBs069+5hM33B4GvAwtKq+7onQj8CDg50zad\nsHnb6aeyQvP+bQe+z/BphDeVUFc7NOtb1vfo7GMOzfrXTcuWZv3rpmWLJEmSJEmSJEmSJEmSJEmS\nJHWiGvDKsosYg7MJY+EcrUsIX6g8SPiiWtZKwncxthEGZat7JeH8/u0MDyEBYSjrN7WhJkkaN+4l\nXTiOZ7fRnjH2f5nwDd/G/s8nfAFqMuFSvDsYvo78JsJ4/xCGqKlfx/3k+JyOMeN5+Ax1nxMJ40c9\nSFhLvSS2v5+wANoM/FPm9TXgI4RvkT9KWHB+gfDt6g/E18wlrAXfTrhg0meB45vMezHw34Rvvq6L\ntTRqZX4AVxC+afoA8I8M/x/dFN+7hTC6Z92u+Ph+4GHCxVgaPY9wsadvxse9hK2IewnXVb+qyXtG\nso3mQyMsJQynUB8XaQfhAlozOTQEbgOWxemnCENIvHQM81cXMBxUpCXAbsJw5WcD/xHb/4Gw1no2\nYcH+27F9CPg5YSF9M2FcrT8BXkYY3G5afN084GOENeNB0uGzn08YJfU3CLtP7gfe2aS+VuZ3FmFM\n/NcQhh94FvjD+P73xfe+nDCGzcsyn/tknPfNwLuazHsB4drpWfMIobYQuBaYGNv/k0Ov9FW/He5a\nBKcRxkSq6wNmNWnfHdvrNgG/dpjPVpeZVHYBOqY8DHyYcHW0LzJ8EZkLCIPVnUAYr2dLfB7CQH3E\nti2EkUEhjO0zhxAGjxPGioGwBXE1cEN8XCGskc8nbDlAGFCtPt1otPm9EHgdYSH/rdh+PGEQRYDL\ngLcR/q9mxnluic99Pt5/G/jdJvN9EeGKXXVDhK2sA4Q1932Ege9+SPEL6h8CLy54niqZ4aAibSes\nIb8e+GvgHsJlQz9GWODuJqwhZ4e6/nm8fzYzXX9c//sdyrRXGh7X3U1rF95pZX5rgPc2vO90wrWV\nzyUMhXwrzftxkOb/d0MM7/+v+7/MdPZ99wEnNfmMdxF+piPZzaEXeJlN2GLYHaez7bszj0f6maqL\nuVtJRZpJGMb604QtiAUML0B/TFjgXdL8raN6IWHrAEIA3Jd5bohwZa/zgDNi24nAmUcwnyHCwvf3\nGb6AyvQ4/5OB/yFsycwgXKN3LL7P8HUuDud1hJ9d461ZMGQDZwPwRsKW0+mEn8EmwpbPIOH4Q4Vw\ndlJ2KPWZhGMUOoa45aAinQ18iLAWfoCwP3+AcInULYSF1DdGeO8QI6+9fgd4B+EA7iOE/fpZPyIc\nM1hLOPAL4fjA9lFqHWl+jwJ/SRhufELsxwrCQvYBwsHgx2l+TenRPvch0gPVR7q2fjHwUcKxli/F\nui4iHLBfF++fiXXX57EC+CRhN9mXOfQiMQtpfpxEksatuYSznLrBJwlr7+PJFIbPoJKkjjGXcKC7\nG7yMcKxiPLmacOquJEmSJEmSJEmSJEmSJEmSJBXh/wEpLq6DT7+D0wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d915710>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pyplot.hist(sample_means, color=COLOR5)\n",
"pyplot.xlabel('sample mean (n=100)')\n",
"pyplot.ylabel('count')\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The mean of the sample means is close to the actual population mean, which is nice, but not actually the important part."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"72.652052080657413"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample_means.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The standard deviation of the sample means quantifies the variability from one experiment to the next, and reflects the precision of the estimate.\n",
"\n",
"This quantity is called the \"standard error\"."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"1.6355262477017491"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std_err = sample_means.std()\n",
"std_err"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also use the distribution of sample means to compute a \"90% confidence interval\", which contains 90% of the experimental results:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 69.92149384, 75.40866638])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conf_int = numpy.percentile(sample_means, [5, 95])\n",
"conf_int"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following function takes an array of sample statistics and prints the SE and CI:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def summarize_sampling_distribution(sample_stats):\n",
" print('SE', sample_stats.std())\n",
" print('90% CI', numpy.percentile(sample_stats, [5, 95]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And here's what that looks like:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.6355262477\n",
"90% CI [ 69.92149384 75.40866638]\n"
]
}
],
"source": [
"summarize_sampling_distribution(sample_means)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we'd like to see what happens as we vary the sample size, `n`. The following function takes `n`, runs 1000 simulated experiments, and summarizes the results."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def plot_sample_stats(n, xlim=None):\n",
" sample_stats = compute_sample_statistics(n, iters=1000)\n",
" summarize_sampling_distribution(sample_stats)\n",
" pyplot.hist(sample_stats, color=COLOR2)\n",
" pyplot.xlabel('sample statistic')\n",
" pyplot.xlim(xlim)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's a test run with `n=100`:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.71202891175\n",
"90% CI [ 69.96057332 75.58582662]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEPCAYAAABIut/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEdZJREFUeJzt3X+Q1PV9x/HneqiNknh3MQFEIhY1IzGtWEPt6IwLQylO\nO6Jm/NWakqlNneCI0zRNpJ2Gu0nGmrYxpG10Wn+VRiXBqBTamPHndjQmYioIiCggRKEKUe5MnGkS\nxOsfn896X5e9u9293dvdzz0fM9/Z7372u9/vm2O/r/vc5/vd7xckSZIkSZIkSZIkSZIkSZLGpWnA\nY8BzwGZgSWzvAXYD6+N0XuY9S4FtwFZg/lgVKkmqzmTg9Dg/EXgBOBVYBnyuzPIzgQ3A4cB0YDtw\nWMOrlCQdYqTwfY0Q2ABvAc8DU+PzXJnlFwIrgQPALkLAzx51lZKkqlXTu54OzAJ+FJ9fAzwL3AZ0\nxrbjCEM3RbsZ/IUgSRpDlQb8ROC7wLWEnvzNwImE4ZtXga8N896B0RQoSarNhAqWORy4F7gTWB3b\n9mVevxVYG+f3EA7MFh0f295jxowZAzt27Ki6WEka53YAJ1W68Eg9+BxhCGYLsDzTPiUzfyGwKc6v\nAS4DjiD08E8G1h1S4Y4dDAwMtO20bNmyptcwHmu3/uZP1t/cCZhRabjDyD34s4ErgI2E0yEB/gq4\nnDA8MwDsBK6Kr20BVsXHt4HFOEQjSU0xUsA/Qfle/gPDvOf6OEmSmshz1GuQz+ebXULN2rl2sP5m\ns/72Uu5c9rEwEMeTJEkVyuVyUEVu24OXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgNa50dXWT\ny+UaPnV1dTf7nyp5HrzGl1wux6P3bW74duZedBp+xlVvngcvSQIMeElKlgEvSYky4CUpUQa8JCXK\ngJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJmtDsAqSurm76+/uaXYaUHANeTdff3zcmFwCDcBEw\nabxwiEaSEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9J\niTLgJSlRIwX8NOAx4DlgM7AktncDDwEvAg8CnZn3LAW2AVuB+fUsVpJUuZEC/gDw58DHgLOAq4FT\ngesIAX8K8Eh8DjATuDQ+LgBuqmAbkqQGGCl8XwM2xPm3gOeBqcD5wIrYvgK4IM4vBFYSfjHsArYD\ns+tXriSpUtX0rqcDs4CngEnA3ti+Nz4HOA7YnXnPbsIvBEnSGKv0jk4TgXuBa4Gfl7w2EKehlH2t\np6fn3fl8Pk8+n6+wFEkaHwqFAoVCoeb3VxLwhxPC/VvA6ti2F5hMGMKZAuyL7XsIB2aLjo9th8gG\nvCTpUKWd397e3qreP9IQTQ64DdgCLM+0rwEWxflFDAb/GuAy4AjgROBkYF1VFUmS6mKkHvzZwBXA\nRmB9bFsK3ACsAq4kHEy9JL62JbZvAd4GFjP88I0kqUFGCvgnGLqXP2+I9uvjJElqIs9Rl6REGfCS\nlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJ\nMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiZrQ7ALUurq6uunv72t2GW2po6OD\nXC7X8O10dnbR17e/4dtRezLgNaT+/j4evW9zw7cz96LTGr6NsXbw4EF/dmo6h2gkKVEGvCQlyoCX\npEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REVRLwtwN7gU2Zth5gN7A+Tudl\nXlsKbAO2AvPrUqUkqWqVBPwdwIKStgHgRmBWnB6I7TOBS+PjAuCmCrchSaqzSsL3caDcNWPLXQt1\nIbASOADsArYDs2stTpJUu9H0rq8BngVuAzpj23GEoZui3cDUUWxDklSjWgP+ZuBE4HTgVeBrwyw7\nUOM2JEmjUOsNP/Zl5m8F1sb5PcC0zGvHx7ZD9PT0vDufz+fJ5/M1liJJaSoUChQKhZrfX2vATyH0\n3AEuZPAMmzXA3YQDsFOBk4F15VaQDXhJ0qFKO7+9vb1Vvb+SgF8JnAscC7wCLAPyhOGZAWAncFVc\ndguwKj6+DSzGIRpJaopKAv7yMm23D7P89XGSJDWR56hLUqIMeElKlAEvSYky4CUpUQa8JCXKgJek\nRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqU\nAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnw\nkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVGVBPztwF5gU6atG3gIeBF4EOjMvLYU2AZsBebXp0xJ\nUrUqCfg7gAUlbdcRAv4U4JH4HGAmcGl8XADcVOE2JEl1Vkn4Pg70lbSdD6yI8yuAC+L8QmAlcADY\nBWwHZo+6SklS1WrtXU8iDNsQHyfF+eOA3ZnldgNTa9yGJGkU6jF8MhCn4V6XJI2xCTW+by8wGXgN\nmALsi+17gGmZ5Y6PbYfo6el5dz6fz5PP52ssRZLSVCgUKBQKNb+/1oBfAywCvhofV2fa7wZuJAzN\nnAysK7eCbMBLkg5V2vnt7e2t6v2VBPxK4FzgWOAV4EvADcAq4ErCwdRL4rJbYvsW4G1gMQ7RSFJT\nVBLwlw/RPm+I9uvjJElqIs9Rl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJek\nRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVG13tFJUgvo6Oggl8s1fDudnV309e1v+HZUXwa8\n1MYOHjzIo/dtbvh25l50WsO3ofpziEaSEmXAS1KiDHhJSpRj8G2oq6ub/v6+ZpchqcUZ8G2ov7/P\nA2uSRuQQjSQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgD\nXpISZcBLUqIMeElK1GgvF7wL+BlwEDgAzAa6ge8AJ8TXLwH6R7kdSVKVRtuDHwDywCxCuANcBzwE\nnAI8Ep9LksZYPYZociXPzwdWxPkVwAV12IYkqUr16ME/DPwY+ExsmwTsjfN743NJ0hgb7Rj82cCr\nwIcIwzJbS14fiNMhenp63p3P5/Pk8/lRliJJaSkUChQKhZrfP9qAfzU+/hS4nzAOvxeYDLwGTAH2\nlXtjNuAlSYcq7fz29vZW9f7RDNEcBbw/zh8NzAc2AWuARbF9EbB6FNuQJNVoND34SYRee3E9dwEP\nEsbjVwFXMniapCRpjI0m4HcCp5dp3w/MG8V6JUl14DdZJSlRBrwkJcqAl6REGfCSlCgDXpISZcBL\nUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJGu09WSWNAx0d\nHeRyuYZvp7Ozi76+/Q3fznhhwEsa0cGDB3n0vs0N387ci05r+DbGE4doJClRBrwkJcqAl6REGfCS\nlCgDXpISZcBLUqIMeElKlOfB11FXVzf9/X3NLkOSAAO+rvr7+/wyiKSW4RCNJCXKgJekRBnwkpQo\nA16SEmXAS1KiDHhJSpQBL0mJSv48+DfffJM9e/Y0uwxJGnONCvgFwHKgA7gV+GqDtjOiz352MY88\n/AgTj35/Q7fzxv7XG7p+SapWIwK+A/hnYB6wB3gaWAM834BtjeiXv/gVV33q88w557y6rXPD5nWc\nftrs97Tdetdy7r731rpto1HK1d5OrL+52r3+QqFAPp9vdhljphFj8LOB7cAu4ADwbWBhA7bTNBs2\nP93sEmrWzrWD9Tdbo+sv3ty7UdOcOXPI5XJ0dXU39N/RKhrRg58KvJJ5vhv47QZsR1JiGn1z73/7\n9jf59GVXj5vrOTUi4AcasM6adXQcxqo1d/DYk9+r2zp/8spOXnp563vadr28o27rl6R6yDVgnWcB\nPYQDrQBLgXd474HW7cCMBmxbklK2AzipmQVMiEVMB44ANgCnNrMgSVL9nAe8QOipL21yLZIkSZKq\n0Ql8l3Ae/BYGz6i5JrZtpolfhKpAaf1nEU4FfRpYHx8/0bTqhvdRQo3F6U1gCdANPAS8CDxI+De2\nonL1Xwv8PeH/41ngPuCYZhU4jKF+9kV/QTg21arn6w1Xfzvsu0N9dtpl34Uw+vEcsAm4GziSFtx3\nVwB/EucnEHbGOYQiD4/tH2pCXZUqV38B+L3Ydh7w2NiXVbXDgFeBacDfAV+I7V8EbmhWUVXI1v+7\nDH6H4wZav/5s7cTH7wM7ad2Az8rW3077blGx/o/QPvvudOAlQqgDfAdYRIvtu8cQiiy1Cpg7xrXU\nYqj6VwKXxPnLgTvHrKLazQcej/NbgUlxfnJ83urmA0+Uab+Q1v/5l9Z+D/AbtE/AZz877bLvZmXr\nb5d9t5twHLOL0LFcS+jYtNS+ezrwFHAH8AxwC3A04c+jHuBHhN+oZzanvBGVq/8o4ATCl7leJnyR\na9pQK2ghtwOL43xfpj1X8rxVZevPWgv84RjXUq1s7QuBr8f5dgn4bP3tsu9mZetvp333z4CfA/uA\nb8W2ltp3zyRcrqA4zrUc+DJhTOkbse0TlO8lt4Kh6n+Y0HMEuJjwJ2srOwL4KYN/Tpd+KPaPbTlV\nK62/6K+Be8e+nKpkaz+K0GH4QHxtJ/DBJtVVqdKffbvsu0Wl9bfLvjuDcMzvg4Qe/P3AFbTYvjuZ\n8CEuOgf4T+B7wLmZ9u205ge9XP3/Bfws05YjHMBpZQsJY75FWwn/NoAptP4QTWn9AJ8GfgD82phX\nU51s7R8H9hI+UzsJnYddwIebUlllSn/2D9Ae+25Raf3tsu9eSrgSb9GngG8SDm5XvO82+oYfrxH+\nHDolPp9HOCr8HwyO451C+C37RoNrqcVQ9W9j8EM+l3BEu5VdThh7LFpDOGBDfFw95hVVp7T+BcBf\nEnbeXzSlospla99EGD89MU67gTMIf4K3qtKf/WraY98tKq1/O+2x724lnLH3PsIvonmEHv1aWmzf\n/U3C6UjZU9oOJ4wpbQL+B8g3q7gKlKv/TMKf2huAHwKzmlbdyI4GXgeyF8TvJvyp2jKnWg2jXP3b\ngJ8weArcTU2oqxLlas96idYegy9Xfzvtu+Xqb6d99wsMnia5gvCzb6d9V5IkSZIkSZIkSZIkSZIk\nSVLtCsBvjXId5wK/U8NyVxG+hViv5aWKNeKm21KrGWD0N4OfQ7jw0w+rXO5f6ry8JLW0ownX9NlA\n+JbexbH9S8C62JYNugJwI+Ebxc8TLnJ1P+HbfF+Oy0wnfL37TsJXuu8hfM0bwjW/z4jz84EnCd/C\nXBVrKbWE8A3CZwk3WjiBcD3x3YRvzp4D/AHhiorPEC5Y9eFYQ+lyPYSbe1S63uzyJxG+tbgh1vvr\nZWqVpJbySeBfM8+LV1fsyrT9OyFEIQT038b5JcD/Eq7pcgThWkFdhHB9h8HhjtsYDMpiwB8L/DeD\nwf9F4G/K1LeHwRtaFGtbBnwus0z2K+J/CvzDEMtln1ey3uzzpwjX24Hwb30fUhUafbExqZyNhJsX\n3EDotRav8DeX0CveGOdnZt6zJj5ujtNe4FeE67kUr+n9CoNDHXfGdRflCBdvmknowa8H/phwl59y\n9d0N/BFwsGQdRdMI1wLZCHy+pNbsctWut2gicBzhwnwQ/q3/N8R6pbIMeDXDNsJFnjYBXyH0oo8k\nXA71k4S7Hd3Cey8F/Mv4+E5mvvi8eCwpO86eo/y4+0Nx27OAjwGfKbPM78daziAMC3WUWeafgH+M\ntV7F8L3rYoBXsl6pbgx4NcMUwmV+7yIMbcxiMMzfIPReLy7/1mF9hNBLh3CXp8czrw0Q/jo4m3Az\nBQjj7yeXrCPH4L07ryNcPXQi4UBo9qqEHyAMFUG4Nn1R6XLVrre47FuEsfniEM2ROESjKhnwaoaP\nE8aX1xMOrH6FcOOFWwjDL9+Pr5cz3BkxLwBXEw6yHgPcXPL664QwXkk40Pkk8NGSZToIl8PdSDiA\n+o1Y21rCnYCyB0PvAX5MuGNQsabics8wOEQ0UMF6S5eHcLrkkljrDxi8F6ckjSvTCUM+kiJ78ErJ\naM91lyRJkiRJkiRJkiRJkiRJktT6/h+vgGLmrLQN+wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d9eaf90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_sample_stats(100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can use `interact` to run `plot_sample_stats` with different values of `n`. Note: `xlim` sets the limits of the x-axis so the figure doesn't get rescaled as we vary `n`."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.71314776815\n",
"90% CI [ 69.99274896 75.65943185]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEPCAYAAABIut/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEaNJREFUeJzt3X+QXeVdx/H3ZRMoSSjZFZqEkHYxQCVEJVVjHWC4zcRM\nUIdAmPJD0WCxg9IhTKtTiDM2uxYpdQTRKoyWH5OWEpu2IQaddgg/LqXWQisJSQiBJJIxSWGhklhw\n1IZl/eN5Lnu4ubt7f+y99+yT92vmzj3nOefc++XZ5bNPnnPuuSBJkiRJkiRJkiRJkiRJknRUmgM8\nDjwHbAdWxvY+YD+wOT4uzByzCtgF7ASWtKtQSVJ9ZgLnxOVpwAvAWcBq4FNV9p8HbAEmA73AbuCY\nllcpSTrCWOH7CiGwAd4Engdmx/VClf2XAWuBw8BeQsAvbLpKSVLd6hld9wILgO/F9euBZ4F7gOmx\n7RTC1E3Zfob/IEiS2qjWgJ8GfB24gTCSvws4jTB98zJw2yjHDjVToCSpMZNq2Gcy8A3gfmBDbHs1\ns/1u4KG4fIBwYrbs1Nj2LnPnzh3as2dP3cVK0lFuD3B6rTuPNYIvEKZgdgB3ZNpnZZYvAbbF5Y3A\nFcCxhBH+GcDTR1S4Zw9DQ0O5f6xevbrjNaRS50So0TqtM+8PYG6t4Q5jj+DPBa4CthIuhwT4Y+BK\nwvTMEPAScG3ctgNYF5/fAq7DKRpJ6oixAv47VB/lf3OUY26JD0lSB3mN+iiKxWKnS6jJRKhzItQI\n1jnerLOzql3L3g5DcT5JklSjQqEAdeS2I3hJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJl\nwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAV+51d/dQKBRGfXR393S6TCl3vJukcq9QKPDY+u2j7rNo\n+Xz8nVLqvJukJAkw4CUpWQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBryR0dXX5aVepwqRO\nFyCNh8HBwZo+7SodTRzBS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4\nSUrUWAE/B3gceA7YDqyM7T3AJuBF4GFgeuaYVcAuYCewZDyLlSTVbqyAPwx8Ejgb+DDwCeAs4CZC\nwJ8JPBrXAeYBl8fnpcCdNbyHJKkFxgrfV4AtcflN4HlgNnARsCa2rwEujsvLgLWEPwx7gd3AwvEr\nV5JUq3pG173AAuApYAYwENsH4jrAKcD+zDH7CX8QJEltVuvtgqcB3wBuAN6o2DYUHyOpuq2vr++d\n5WKxSLFYrLEUSTo6lEolSqVSw8fXEvCTCeH+ZWBDbBsAZhKmcGYBr8b2A4QTs2WnxrYjZANeknSk\nysFvf39/XcePNUVTAO4BdgB3ZNo3Aivi8gqGg38jcAVwLHAacAbwdF0VSZLGxVgj+HOBq4CtwObY\ntgq4FVgHXEM4mXpZ3LYjtu8A3gKuY/TpG0lSi4wV8N9h5FH+4hHab4kPSVIHeY26JCXKgJekRBnw\nkpQoA16SEmXAS1KiDHhJSpQBr47r7u6hUCiM+JDUmFrvRSO1zKFDB3ls/fYRty9aPr+N1UjpcAQv\nSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKU\nKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky\n4CUpUQa8JCWqloC/FxgAtmXa+oD9wOb4uDCzbRWwC9gJLBmXKiVJdasl4O8Dlla0DQG3Awvi45ux\nfR5weXxeCtxZ43tIksZZLeH7JHCwSnuhStsyYC1wGNgL7AYWNlqcJKlxzYyurweeBe4Bpse2UwhT\nN2X7gdlNvIckqUGNBvxdwGnAOcDLwG2j7DvU4HtIkpowqcHjXs0s3w08FJcPAHMy206NbUfo6+t7\nZ7lYLFIsFhssRZLSVCqVKJVKDR/faMDPIozcAS5h+AqbjcADhBOws4EzgKervUA24CVJR6oc/Pb3\n99d1fC0Bvxa4ADgJ2AesBoqE6Zkh4CXg2rjvDmBdfH4LuA6naCSpI2oJ+CurtN07yv63xIeUK11d\nXRQK1S7+GjZ9ejcHD77epoqk1mp0ikaacAYHB3ls/fZR91m0fH6bqpFazw8hSVKiDHhJSpQBL0mJ\nMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgD\nXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAl\nKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9Jiaol4O8FBoBtmbYeYBPwIvAwMD2zbRWw\nC9gJLBmfMiVJ9aol4O8Dlla03UQI+DOBR+M6wDzg8vi8FLizxveQJI2zWsL3SeBgRdtFwJq4vAa4\nOC4vA9YCh4G9wG5gYdNVSpLq1ujoegZh2ob4PCMunwLsz+y3H5jd4HtIkpowHtMnQ/Ex2nZJUptN\navC4AWAm8AowC3g1th8A5mT2OzW2HaGvr++d5WKxSLFYbLAUSUpTqVSiVCo1fHyjAb8RWAF8Pj5v\nyLQ/ANxOmJo5A3i62gtkA16SdKTKwW9/f39dx9cS8GuBC4CTgH3AZ4BbgXXANYSTqZfFfXfE9h3A\nW8B1OEUjSR1RS8BfOUL74hHab4kPSVIHeY26JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJ\nMuAlKVEGvCQlyoCXpEQZ8Gqp7u4eCoXCqA9JrdHo3SSlmhw6dJDH1m8fdZ9Fy+e3qRrp6OIIXpIS\nZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL2V0dXWNemO0\n7u6eTpco1cybjUkZg4ODo94czRujaSJxBC9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIM\neElKlAEvSYky4CUpUQa8JCWq2XvR7AV+DAwCh4GFQA/wVeADcftlwKEm30eSVKdmR/BDQBFYQAh3\ngJuATcCZwKNxXZLUZuMxRVOoWL8IWBOX1wAXj8N7SJLqNB4j+EeAHwAfj20zgIG4PBDXJUlt1uwc\n/LnAy8DJhGmZnRXbh+LjCH19fe8sF4tFisVik6VIUlpKpRKlUqnh45sN+Jfj82vAg4R5+AFgJvAK\nMAt4tdqB2YCXJB2pcvDb399f1/HNTNFMAU6Iy1OBJcA2YCOwIravADY08R6SpAY1M4KfQRi1l1/n\nK8DDhPn4dcA1DF8mKUlqs2YC/iXgnCrtrwOLm3hdSdI48JOskpQoA16SEmXAS1KiDHhJSpQBL0mJ\nMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgD\nXqpDV1cXhUJh1Ed3d0+ny5SA5r6yTzrqDA4O8tj67aPus2j5/DZVI43OEbwkJcqAV8O6u3vGnK6Q\n1DlO0ahhhw4ddLpCyjFH8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCg/\nyaqqrr76d9n70t5OlyGpCQa8qtqwYQOfvHY1U4+fVnX7vh/u5Ylvl9pblKS6GPAa0TlnL+S9J5xY\nddu0qSe0uZqJo3zP+NFMn97NwYOvt6kiHa0MeGmcec945UWrTrIuBXYCu4AbW/QekqRRtCLgu4C/\nIYT8POBK4KwWvE/LlUqlTpdQk4lQ55btT3e6hKRMhJ85WGentSLgFwK7gb3AYeAfgGUteJ+Wmyg/\n9IlQ55bt3+90CUmZCD9zsM5Oa0XAzwb2Zdb3xzZJUhu14iTrUAteU23WdcwxfO4LNzJ50uSq29/4\n7zfaXJGkerXiSzM/DPQR5uABVgFvA5/P7LMbmNuC95aklO0BTu9kAZNiEb3AscAWJuhJVknSkS4E\nXiCM1Fd1uBZJkiRJ9dgLbAU2A+WLofsIV9dsjo+l1Q5ss+nA14HngR3ALwM9wCbgReDhuE+nVdZZ\nPueRp/78YKaWzcB/ASvJX39Wq/MG8tefq4DngG3AA8Bx5K8voXqdfeSrLyH8jLcB2+My5LM/q9XZ\nR8768yVC52WtBj7VgVpGswb4WFyeBJwI/Dnw6dh2I3BrB+qqVK3OPPZn2THAy8Ac8tmfZdk689Sf\nvcC/E8IS4KvACvLXl71UrzNPfQkwnxCa7yF8KHMT4YKPvPXnSHXW1Z/tuh98tat1WnEFT6NOBM4H\n7o3rbxFGcxcRApX4fHH7S3uXkeqEfPVn1mLCuZh95K8/s7J1FshPf/6Y8IHBKYQ/6FOAH5K/vqxW\n54G4LS99CfAzwFPA/wKDwBPApeSvP6vVuTxuq7k/2xHwQ8AjwA+Aj2farweeBe6h8/8cOg14DbgP\neAb4IjAVmAEMxH0G4nonVatzStyWp/7MugJYG5fz1p9Z2TqHyE9/vg7cBvwHIdgPEUZzeevLanU+\nErflpS8hTHecT5hVmAL8GnAq+evPanXOidvy1J/Mis8nEy6ZPB94H8OjpJsJhXbSLxJGH78U1+8A\nPgscrNiv0/d3rVbnnxL6Nk/9WXYs4Q/SyXE9b/1ZVllnnn4/5xLOtfwUYWT8IHAV+evLanX+Fvnq\ny7KPEQacTwB3An9J/voTqteZ1//XgTB/9IcVbb2EuaZOmkk4V1B2HvDPhBOZM2PbLMIdMjupWp3/\nVLFPL53vz7JlwLcy6zvJV3+WVdaZ1Utn+/Ny4O7M+m8Df0v+fjdHqjOrl/z8bpb9GfAH5Pd3s+wW\n4Pcr2noZoz9bPUUzBSh/M8RUYEksaGZmn0vo/A/9FcLc65lxfTHhaoCHCCeKiM8b2l/au4xUZ976\ns+xKhqc9ADaSr/4sq6xzVma50/25k3Cl1PGEUdtiwkg5b7+bI9WZx9/N98Xn9xPmtR8gn7+b2Tov\nIdSZp99NTiNMy2whzCmVP/T0JcKlk88SOrLT810APw98n1DTesIJzR7CPGKeLp2qrHM6+ezPqcCP\nGP4DD/nsz2p15q0/P83w5YdrgMnksy8r6zyW/PUlwLcJdW4BPhLb8tif1erMY39KkiRJkiRJkiRJ\nkiRJkiRJGn8l4BeafI0LgF9pYL9rCZ/qHK/9pZq14ku3pbwZovkvg/8I8Abwr3Xu93fjvL8k5dpU\nwr1+thA+9fjR2P4ZwpfCbOPdQVcCbid8gvd5ws3WHiR86vCzcZ9ewsfl7yd8RP5rhI/NAzwOfCgu\nLwG+C/wbsC7WUmkl4ROEzxI+Hv4Bwr3iy1+0cB7wG8D3CHf13ET4WHlvlf36GL7/Ui2vm93/dMKn\nK7fEen+6Sq2SlCuXAn+fWX9vfO7OtH2JEKIQAvpzcXkl4Xa0Mwgfhd8Xj+sF3mZ4uuMehoOyHPAn\nEe7MVw7+G4E/qVLfAcLtALK1VX7RQvaj7L8H/MUI+2XXa3nd7PpThBuhQfhvPR6pDu36wg8payvw\nq4RvzTmP8GURAIsIo+KtcXle5piN8Xl7fAwAPyF8i1D5Ptn7GJ7quD++dlmBcDOseYQR/Gbgdwg3\ncqpW3wOE290OVrxG2RzCPUu2An9UUetIX8hQy+uWTQNOAf4xrv8E+J8RXleqyoBXJ+wCFhCmYm4m\njKKPI9xe9lLg5whfZvKezDH/F5/fziyX18vnkrLz7AWqz7tviu+9ADibd38JTdmvx1o+RJgW6qqy\nzxeAv461Xsvoo+tygNfyutK4MeDVCbMIX0X2FcLUxgKGw/w/CaPXj1Y/dFTvJ4zSAX4TeDKzbYjw\nr4NzCV9OAWH+/YyK1yjE1ykBNxHuKjqNcCI0e8fJ9xKmigCuzrRX7lfv65b3fZMwN1+eojkOp2hU\nJwNenfCzhPnlzYQTqzcTvlv2i4Tpl2/F7dWMdkXMC8AnCCdZTwTuqtj+I0IYryWc6Pwu8MGKfbqA\nLxOmU54B/irW9hDh/tvZk6FfI3zjzmuZmsr7PcPwFNFQDa9buT+EyyVXxlr/BW8NK+ko1Us+vkxC\nyg1H8EpJs9e6S5IkSZIkSZIkSZIkSZIkScq//wcqt2WnGugEMAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d804810>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def sample_stat(sample):\n",
" return sample.mean()\n",
"\n",
"slider = widgets.IntSliderWidget(min=10, max=1000, value=100)\n",
"interact(plot_sample_stats, n=slider, xlim=fixed([55, 95]))\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This framework works with any other quantity we want to estimate. By changing `sample_stat`, you can compute the SE and CI for any sample statistic.\n",
"\n",
"As an exercise, fill in `sample_stat` below with any of these statistics:\n",
"\n",
"* Standard deviation of the sample.\n",
"* Coefficient of variation, which is the sample standard deviation divided by the sample standard mean.\n",
"* Min or Max\n",
"* Median (which is the 50th percentile)\n",
"* 10th or 90th percentile.\n",
"* Interquartile range (IQR), which is the difference between the 75th and 25th percentiles.\n",
"\n",
"NumPy array methods you might find useful include `std`, `min`, `max`, and `percentile`.\n",
"Depending on the results, you might want to adjust `xlim`."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.67195986148\n",
"90% CI [ 69.82954731 75.32184298]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEPCAYAAACjjWTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEfxJREFUeJzt3XuMnNV9h/FnWGMSoLF3ResLdmIXTIWhDZCG0pKKwTIO\nqBEmVNxSWjelERIo0PQCGClht4kIiQJNb6CWAHIhuHGAuEZRKAYzFblwSWIuxjjYDlaxi9cE7ARK\nW/Cy/eOc2RmPd3bHM7M7y/6ej/Rq3vfM+75z9sB85/i8N5AkSZIkSZIkSZIkSZIkSVKbvAd4HHgK\n2Ah8MZf3AGuBF4AHgelV2ywHNgObgCXjVlNJUksOza9TgMeAjwBfBq7K5VcDN+T5haQfhoOBecAW\n4KDxqqgkqXWHAk8Cx5F67TNy+cy8DKlXf3XVNg8Ap4xXBSVJw2uk130QqbfeDzwCPEcK+v78fj+V\n4J8NbK/adjtwZFtqKklq2pQG1nkHOAGYBvw7cHrN+4N5qmek9yRJ46CRsC/7OfBt4EOk3vxMYCcw\nC9iV19kBzK3aZk4u28dRRx01uHXr1mbqK0mRbQWObmbD0YZxjqByps17gTOA9cAaYFkuXwaszvNr\ngAuBqcB8YAHwxH613bqVwcFBp8FBrrvuuo7XYaJMtoVtYVuMPAFHNRP0MHrPfhawgvSjcBBwJ/Bw\nDvxVwCXANuD8vP7GXL4R2AtchsM4ktRxo4X9s8BJw5S/Biyus831eZIkTRCeA99hxWKx01WYMGyL\nCtuiwrZoj0KHPncwjz9JkhpUKBSgydy2Zy9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2\nkhSAYS9JARj2khSAYS9JARj2khSAYS+pId3dPRQKhX2m7u6eTldLDfKul5IaUigUWHffhn3KFp17\nPH6Xx493vZQkjciwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCw\nl6QARgv7ucAjwHPABuCKXN4LbAfW5+msqm2WA5uBTcCSNtZVktSkKaO8/zbwGeAp4HDgR8BaYBC4\nKU/VFgIX5NcjgYeAY4B32ldlSRNFV1dX+U6MAEyf3s3u3a91sEaqZ7Sw35kngDeA50khDsPfZnMp\nsJL0I7EN2AKcDDzWakUlTTwDAwP73PZ40bnHd7A2GsmBjNnPA06kEtyfBp4GbgOm57LZpOGdsu1U\nfhwkSR3SaNgfDtwDXEnq4d8CzAdOAF4GbhxhW59sIEkdNtowDsDBwL3AXcDqXLar6v2vAffn+R2k\ng7plc3LZfnp7e4fmi8UixWKxkfpKUhilUolSqdSWfY32eKsCsAJ4lXSgtmwWqUdPLv8w8AnSgdm7\nSeP05QO0R7N/797HEkrvMvUeS1g7Zu93e+y08ljC0Xr2pwIXA8+QTrEEuBa4iDSEMwi8CFya39sI\nrMqve4HLcBhHkjputLD/LsOP639nhG2uz5MkaYLwClpJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QA\nDHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJ\nCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCmC0sJ8LPAI8B2wA\nrsjlPcBa4AXgQWB61TbLgc3AJmBJOysrSWrOaGH/NvAZ4DjgFOBy4FjgGlLYHwM8nJcBFgIX5Ncz\ngZsb+AxJ0hgbLYh3Ak/l+TeA54EjgbOBFbl8BXBOnl8KrCT9SGwDtgAnt6+6kqRmHEivex5wIvA4\nMAPoz+X9eRlgNrC9apvtpB8HSVIHTWlwvcOBe4Ergddr3hvMUz3Dvtfb2zs0XywWKRaLDVZFkmIo\nlUqUSqW27KuRsD+YFPR3AqtzWT8wkzTMMwvYlct3kA7qls3JZfupDntJ0v5qO8J9fX1N72u0YZwC\ncBuwEfhqVfkaYFmeX0blR2ANcCEwFZgPLACeaLp2kqS2GK1nfypwMfAMsD6XLQduAFYBl5AOxJ6f\n39uYyzcCe4HLGHmIR5I0DkYL++9Sv/e/uE759XmSJE0QngMvSQEY9pIUgGEvSQEY9pIUgGEvSQEY\n9pIUgGEvqW26urooFApDU3d3T6erpKzRe+NI0qgGBgZYd9+GoeVF5x7fwdqomj17SQrAsJekAAx7\nSQrAsJekAAx7SQrAsJekAAx7SQrAsJekAAx7SQrAsJekAAx7SQrAsJekAAx7SQrAsJekAAx7SQrA\nsJekAAx7SQrAsJekAAx7SQrAsJekABoJ+9uBfuDZqrJeYDuwPk9nVb23HNgMbAKWtKWWkqSWNBL2\ndwBn1pQNAjcBJ+bpO7l8IXBBfj0TuLnBz5AkjaFGgvhRYPcw5YVhypYCK4G3gW3AFuDkZisnSWqP\nVnrdnwaeBm4Dpuey2aThnbLtwJEtfIYkqQ2mNLndLcBf5/nPAzcCl9RZd3C4wt7e3qH5YrFIsVhs\nsiqSNDmVSiVKpVJb9tVs2O+qmv8acH+e3wHMrXpvTi7bT3XYS5L2V9sR7uvra3pfzQ7jzKqa/ziV\nM3XWABcCU4H5wALgiaZrJ0lqi0Z69iuB04AjgJeA64AicAJpiOZF4NK87kZgVX7dC1xGnWEcSdL4\naSTsLxqm7PYR1r8+T5KkCcJz4CUpAMNe0rC6u3soFApDk97dmj0bR9Ikt2fPbtbdt2FoedG5x3ew\nNmqVPXtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QA\nDHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJ\nCqCRsL8d6AeerSrrAdYCLwAPAtOr3lsObAY2AUvaU01JUisaCfs7gDNryq4hhf0xwMN5GWAhcEF+\nPRO4ucHPkCSNoUaC+FFgd03Z2cCKPL8COCfPLwVWAm8D24AtwMkt11KS1JJme90zSEM75NcZeX42\nsL1qve3AkU1+hiSpTaa0YR+DeRrp/f309vYOzReLRYrFYhuqIkmTR6lUolQqtWVfzYZ9PzAT2AnM\nAnbl8h3A3Kr15uSy/VSHvSRpf7Ud4b6+vqb31ewwzhpgWZ5fBqyuKr8QmArMBxYATzRdO0lSWzTS\ns18JnAYcAbwEfA64AVgFXEI6EHt+XndjLt8I7AUuY+QhHknSOGgk7C+qU764Tvn1eZIkTRCeAy9J\nARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2\nkhSAYS9JARj2khSAYS9JARj2khSAYS9pzHR1dVEoFIam7u6eTlcprEaeQStJTRkYGGDdfRuGlhed\ne3wHaxObPXtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QAWr2oahvwC2AAeBs4GegB\nvgF8IL9/PrCnxc+RJLWg1Z79IFAETiQFPcA1wFrgGODhvCxJ6qB2DOMUapbPBlbk+RXAOW34DElS\nC9rRs38I+CHwqVw2A+jP8/15WZLUQa2O2Z8KvAz8MmnoZlPN+4N5kiR1UKth/3J+fQX4Fmncvh+Y\nCewEZgG7htuwt7d3aL5YLFIsFlusiqRWdHf3sGfP7k5XQ1VKpRKlUqkt+2ol7A8FuoDXgcOAJUAf\nsAZYBnwpv64ebuPqsJfUeXv27PZ2xBNMbUe4r6+v6X21EvYzSL358n6+DjxIGr9fBVxC5dRLSVIH\ntRL2LwInDFP+GrC4hf1KktrMK2glKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwl\nKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDD\nXpICMOwlKQDDXpICmNLpCkgaf3v37mXbtm2drobGkWEvBXTrrbdy1VVX0z29B4A333xzXD63q6uL\nQqEwtDx9eje7d782Lp8dnWEvBfTWW2/x0dOXcvknrwHge0+s47M3XDHmnzswMMC6+zYMLS869/gx\n/0wljtlLUgBjFfZnApuAzcDVY/QZkqQGjUXYdwH/QAr8hcBFwLFj8DmTQqlU6nQVJgzbosK2qLAt\n2mMswv5kYAuwDXgb+Fdg6Rh8zqTg/8gVtkWFbVFhW7THWIT9kcBLVcvbc5kk7aN8dk556u7u6XSV\nJq2xOBtncAz2KamNDjroIH7wZIn+V3YA8Orun3WkHrVn55xx3gf3OzXzyivH/iyhCAqjr3LATgF6\nSWP2AMuBd4AvVa2zBThqDD5bkiazrcDRna5E2RRSheYBU4Gn8ACtJE1KZwE/IfXgl3e4LpIkSZLa\nLfLFVnOBR4DngA1A+ahTD7AWeAF4EJjekdp1RhewHrg/L0dti+nAPcDzwEbgt4jbFstJ35FngbuB\nQ4jTFrcD/aS/vWykv305KUs3AUvGqY4N6SIN68wDDibeWP5M4IQ8fzhpmOtY4MvAVbn8auCG8a9a\nx/w58HVgTV6O2hYrgD/J81OAacRsi3nAT0kBD/ANYBlx2uJ3gRPZN+zr/e0LSRl6MKndtjCBbn/z\n28ADVcvX5Cmq1cBi0q/yjFw2My9HMAd4CDidSs8+YltMIwVcrYht0UPqBHWTfvTuB84gVlvMY9+w\nr/e3L2ff0ZEHSGdC1jWevwRebFUxj/QL/jjpP2R/Lu+n8h92svsb4K9Ip+WWRWyL+cArwB3Aj4Fb\ngcOI2RavATcC/wn8F7CHNIQRsS3K6v3ts0kZWjZqno5n2HuxVXI4cC9wJfB6zXuDxGinjwG7SOP1\n9a71iNIWU4CTgJvz63+z/794o7TFUcCfkTpDs0nflYtr1onSFsMZ7W8fsV3GM+x3kA5Sls1l31+m\nCA4mBf2dpGEcSL/WM/P8LFIITna/A5wNvAisBBaR2iRiW2zP05N5+R5S6O8kXlv8JvB94FVgL3Af\nafg3YluU1ftO1ObpnFxW13iG/Q+BBVQutrqAyoG5CArAbaSzLb5aVb6GdBCK/Lqaye9a0v+o84EL\ngXXAHxKzLXaShjePycuLSWej3E+8tthEGnd+L+n7spj0fYnYFmX1vhNrSN+dqaTv0QLgiXGv3Qgi\nX2z1EdL49FOk4Yv1pFNRe0gHKif7aWX1nEblRz9qW3yQ1LN/mtSbnUbctriKyqmXK0j/Go7SFitJ\nxyreInUAPsnIf/u1pCzdBHx0XGsqSZIkSZIkSZIkSZIkSZIk6d2uBHyoxX2cRrqa80DXu5R0wVi7\n1peaMhYPHJcmmnbcT+V00r2MfnCA6/1Tm9eXpHeNw4Bvk64mfhY4L5d/jnTJ97PsG3ol4CbSVabP\nAx8GvkW6qvDzeZ15pCsJ7yJdYv9N0mX3kB4ac1KeX0K6/8qPgFW5LrWuIF3F+TTpARofAF4m3cNm\nPelq6I8Bj5HuVLkW+JVch9r1eoG/OID9Vq9/NOnqyadyfX91mLpK0oT1+8A/Vy2/L792V5X9CylQ\nIYX1F/P8FaRLymeQ7gvyUt5uHul2FOUhkduohGY57I8A/oPKj8DVwGeHqd8O0mX61XW7jvSwlbLq\ny9b/FPhKnfWqlxvZb/Xy48DSPD+1qt7SAZswTzZRKM+QHkpxA6k3+4tcvojUW34mzy+s2qZ8/5wN\neeon3UPkp1Tu/vcSleGQu/K+ywqkm2wtJPXs1wN/BLy/Tv3uBv4AGKjZR9lc0r1KngH+sqau9W7b\n3Mh+yw4n3eb33/LyW8D/1NmvNCrDXp2wmcrj175A6l0fAvwjqdf/G6SHeLynapv/y6/vVM2Xl8vH\nnqrH5QsMP06/Nn/2icBxwKeGWef3cl1OIg0ddQ2zzt8Df5freikj97rLYd7IfqUxYdirE2YB/0t6\n/uxXSMFbDvZXSb3a84bfdETvp/Jotk8Aj1a9N0j6V8OppIdkQBqvX1Czj0LeT4n0EJFpuT6vA79U\ntd77SMNJAH9cVV673oHut7zuG6Sx/PIwziE4jKMWGPbqhF8njUevJx2U/QLwc1JvfgPpeZqP19l2\npDNrfgJcTjpAOw24peb9n5GCeSXpIOn3gV+rWaeL9CCVZ0gHX/821+1+4OPseyD1m6TnNLxSVafy\nej+mMow02MB+a9eHdArmFbmu3yPW4/gkaVjz2PdBzZKq2LPXZBL12aSSJEmSJEmSJEmSJEmSJEmS\n2uf/Ae9uXzO2YPMxAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d775990>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def sample_stat(sample):\n",
" # TODO: replace the following line with another sample statistic\n",
" return sample.mean()\n",
"\n",
"slider = widgets.IntSliderWidget(min=10, max=1000, value=100)\n",
"interact(plot_sample_stats, n=slider, xlim=fixed([0, 100]))\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Part Two\n",
"========\n",
"\n",
"So far we have shown that if we know the actual distribution of the population, we can compute the sampling distribution for any sample statistic, and from that we can compute SE and CI.\n",
"\n",
"But in real life we don't know the actual distribution of the population. If we did, we wouldn't need to estimate it!\n",
"\n",
"In real life, we use the sample to build a model of the population distribution, then use the model to generate the sampling distribution. A simple and popular way to do that is \"resampling,\" which means we use the sample itself as a model of the population distribution and draw samples from it.\n",
"\n",
"Before we go on, I want to collect some of the code from Part One and organize it as a class. This class represents a framework for computing sampling distributions."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Resampler(object):\n",
" \"\"\"Represents a framework for computing sampling distributions.\"\"\"\n",
" \n",
" def __init__(self, sample, xlim=None):\n",
" \"\"\"Stores the actual sample.\"\"\"\n",
" self.sample = sample\n",
" self.n = len(sample)\n",
" self.xlim = xlim\n",
" \n",
" def resample(self):\n",
" \"\"\"Generates a new sample by choosing from the original\n",
" sample with replacement.\n",
" \"\"\"\n",
" new_sample = numpy.random.choice(self.sample, self.n, replace=True)\n",
" return new_sample\n",
" \n",
" def sample_stat(self, sample):\n",
" \"\"\"Computes a sample statistic using the original sample or a\n",
" simulated sample.\n",
" \"\"\"\n",
" return sample.mean()\n",
" \n",
" def compute_sample_statistics(self, iters=1000):\n",
" \"\"\"Simulates many experiments and collects the resulting sample\n",
" statistics.\n",
" \"\"\"\n",
" stats = [self.sample_stat(self.resample()) for i in range(iters)]\n",
" return numpy.array(stats)\n",
" \n",
" def plot_sample_stats(self):\n",
" \"\"\"Runs simulated experiments and summarizes the results.\n",
" \"\"\"\n",
" sample_stats = self.compute_sample_statistics()\n",
" summarize_sampling_distribution(sample_stats)\n",
" pyplot.hist(sample_stats, color=COLOR2)\n",
" pyplot.xlabel('sample statistic')\n",
" pyplot.xlim(self.xlim)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following function instantiates a `Resampler` and runs it."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def plot_resampled_stats(n=100):\n",
" sample = weight.rvs(n)\n",
" resampler = Resampler(sample, xlim=[55, 95])\n",
" resampler.plot_sample_stats()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's a test run with `n=100`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.72606450921\n",
"90% CI [ 71.35648645 76.82647135]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEPCAYAAABIut/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEoZJREFUeJzt3X+QVeV9x/H3dREVbWS3Gn5JshQ1DdJWTEPtqOOVIQy2\nHVGc+CO1pRObITUjTtqOSmcad6MlJlNt+kunjT+G+IOGJEixmVjxx01NU38kgoBIBCpToLKYCIlm\n2gZw+8fzXPd49+7ee3f37j378H7NnLnnPuece78+u3724Tn3ngOSJEmSJEmSJEmSJEmSJElHpeOB\n54CNwFbgC7G9A1gPvAo8DkzMHLMc2A5sAxaMWqWSpIZNiI/jgGeB84EvATfG9puA2+P6LMIfg2OB\nTmAHcMxoFSpJGpoJwAvAWYTR+aTYPjk+hzB6vylzzGPAuaNVoCSpTz2j62MIo/Ie4GngZUK498Tt\nPfSF/VRgT+bYPcC0EalUktSQcXXs8w5wNnAy8K/ARRXbe+MykMG2SZKapJ6AL/sJ8C3gI4RR+2Rg\nHzAF2B/32QtMzxxzWmx7j5kzZ/bu3LlzKPVK0tFsJ3B6vTvXmqI5hb5PyJwAfAzYAKwDlsT2JcDa\nuL4OuAoYD8wAzgCe71fhzp309vbmfrnllltaXkMqdY6FGq3TOvO+ADPrDXeoPYKfAqwk/CE4BngA\neDKG/GrgWmAXcEXcf2ts3wocBq7DKRpJaolaAb8ZOKdK+5vA/AGOWREXSVIL+Rn1QRSLxVaXUJex\nUOdYqBGsc6RZZ2sVWvS+vXE+SZJUp0KhAA3ktiN4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgD\nXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA17Ja2/voFAo1Fza2ztaXao0orwe\nvJJXKBR4as2WmvvNWzwbfy+VZ14PXpIEGPCSlCwDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXK\ngJekRBnwkpSoWgE/HXgaeBnYAiyL7V3AHmBDXC7OHLMc2A5sAxaMYK2SpAaMq7H9EPBZYCNwEvAD\nYD3QC9wZl6xZwJXxcRrwBHAm8M7IlSxJqketEfw+QrgDvA28QghuqH7Bm0XAKsIfhl3ADmDusKuU\nJDWskTn4TmAO8Gx8fj3wEnAvMDG2TSVM3ZTtoe8PgiRpFNUb8CcB3wBuIIzk7wZmAGcDrwN3DHKs\n11+VpBaoNQcPcCzwTeBBYG1s25/Zfg/waFzfSzgxW3ZabOunq6vr3fVisUixWKynXkk6apRKJUql\n0pCPr3Xh+AKwEvgx4WRr2RTCyJ3Y/lHgE4STqw8T5t3LJ1lPp/8o3ht+aNR4ww+lotEbftQawZ8H\nXANsInwcEuDPgKsJ0zO9wGvA0rhtK7A6Ph4GrsMpGklqiVoB/12qz9N/e5BjVsRFktRCfpNVkhJl\nwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAGvMau9vYNCoVBz\nkY5W9VwPXsqlgwcP1H0ZYOlo5AhekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgD\nXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpSoWgE/HXgaeBnYAiyL7R3AeuBV4HFg\nYuaY5cB2YBuwYCSLlSTVr1bAHwI+C5wFnAt8BvgwcDMh4M8EnozPAWYBV8bHhcBddbyHJKkJaoXv\nPmBjXH8beAWYBlwCrIztK4FL4/oiYBXhD8MuYAcwd+TKlSTVq5HRdScwB3gOmAT0xPae+BxgKrAn\nc8wewh8ESdIoq/em2ycB3wRuAN6q2NYbl4FU3dbV1fXuerFYpFgs1lmK1BxtbW0UCoWa+02c2M6B\nA2+OQkU62pVKJUql0pCPryfgjyWE+wPA2tjWA0wmTOFMAfbH9r2EE7Nlp8W2frIBL+XBkSNHeGrN\nlpr7zVs8exSqkfoPfru7uxs6vtYUTQG4F9gKfDnTvg5YEteX0Bf864CrgPHADOAM4PmGKpIkjYha\nI/jzgGuATcCG2LYcuB1YDVxLOJl6Rdy2NbZvBQ4D1zH49I0kqUlqBfx3GXiUP3+A9hVxkSS1kJ9R\nl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJ\nSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6RE\nGfCSlCgDXpISZcBLUqLqCfj7gB5gc6atC9gDbIjLxZlty4HtwDZgwYhUKUlqWD0Bfz+wsKKtF7gT\nmBOXb8f2WcCV8XEhcFed7yFJGmH1hO8zwIEq7YUqbYuAVcAhYBewA5g71OIkSUM3nNH19cBLwL3A\nxNg2lTB1U7YHmDaM95AkDdG4IR53N/D5uH4rcAdw7QD79lZr7Orqene9WCxSLBaHWIokpalUKlEq\nlYZ8/FADfn9m/R7g0bi+F5ie2XZabOsnG/CSpP4qB7/d3d0NHT/UKZopmfXL6PuEzTrgKmA8MAM4\nA3h+iO8hSRqGekbwq4ALgVOA3cAtQBE4mzD98hqwNO67FVgdHw8D1zHAFI0kqbnqCfirq7TdN8j+\nK+IiSWohP6MuSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQl\nyoCXpEQZ8JKUKANeudPe3kGhUKi5SBrcUO/oJDXNwYMHeGrNlpr7zVs8exSqkcYuR/CSlCgDXpIS\nZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJqifg7wN6\ngM2Ztg5gPfAq8DgwMbNtObAd2AYsGJkyJUmNqifg7wcWVrTdTAj4M4En43OAWcCV8XEhcFed7yFJ\nGmH1hO8zwIGKtkuAlXF9JXBpXF8ErAIOAbuAHcDcYVcpSWrYUEfXkwjTNsTHSXF9KrAns98eYNoQ\n30OSNAwjcUen3rgMtr2frq6ud9eLxSLFYnEESpGkdJRKJUql0pCPH2rA9wCTgX3AFGB/bN8LTM/s\nd1ps6ycb8JKk/ioHv93d3Q0dP9QpmnXAkri+BFibab8KGA/MAM4Anh/ie0iShqGeEfwq4ELgFGA3\n8DngdmA1cC3hZOoVcd+tsX0rcBi4jsGnbyRJTVJPwF89QPv8AdpXxEWS1EJ+Rl2SEmXAS1KiDHhJ\nSpQBL0mJMuAlKVEGvNSgtrY2CoVCzaW9vaPVpeooNxKXKpCOKkeOHOGpNVtq7jdv8exRqEYamCN4\nSUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJek\nRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpESNG+bxu4CfAkeAQ8BcoAP4GvDB\nuP0K4OAw30eS1KDhjuB7gSIwhxDuADcD64EzgSfjc0nSKBuJKZpCxfNLgJVxfSVw6Qi8hySpQSMx\ngn8C+D7wqdg2CeiJ6z3xuSRplA13Dv484HXgVMK0zLaK7b1xkSSNsuEG/Ovx8Q3gEcI8fA8wGdgH\nTAH2Vzuwq6vr3fVisUixWBxmKZKUllKpRKlUGvLxwwn4CUAb8BZwIrAA6AbWAUuAL8bHtdUOzga8\nJKm/ysFvd3d3Q8cPJ+AnEUbt5dd5CHicMB+/GriWvo9JSpJG2XAC/jXg7CrtbwLzh/G6kqQR4DdZ\nJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAGvUdPe3kGhUKi5SBoZw70WjVS3gwcP8NSa\nLTX3m7d49ihUI6XPEbwkJcqAl6REGfCSlCgDXmqStra2uk4qt7d3tLpUJcqTrFKTHDlyxJPKailH\n8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBr2LyRh5RPXotG\nw+aNPKR8cgQvtZhXnVSzOIKXWsyrTqpZmjWCXwhsA7YDNzXpPSRJg2hGwLcBf0cI+VnA1cCHm/A+\nTVcqlVpdQl3GQp0btzzf6hLqMlbqHAs/c7DOVmtGwM8FdgC7gEPAPwGLmvA+TTdWfuhjoc6NW15o\ndQl1GSt1joWfOVhnqzVjDn4asDvzfA/wG014HzXZQw89RE9PT6vLkDREzQj43ia8plpg6dJP87Of\nvd3qMiQNUTO+fXIu0EWYgwdYDrwDfDGzzw5gZhPeW5JSthM4vZUFjItFdALjgY2M0ZOskqT+LgZ+\nSBipL29xLZIkSZIasQvYBGwAyh8y7iJ8umZDXBZWO3CUTQS+AbwCbCV88qcDWA+8Cjwe92m1yjrL\n5zzy1J8fytSyAfgJsIz89We1Om8gf/25HHgZ2Aw8DBxH/voSqtfZRb76EsLPeDOwJa5DPvuzWp1d\n5Kw/XyN0XtYtwB+3oJbBrAQ+GdfHAScDXwJujG03Abe3oK5K1erMY3+WHQO8Dkwnn/1Zlq0zT/3Z\nCfwnISwBvgYsIX992Un1OvPUlwCzCaF5POFLmesJH/jIW38OVGdD/TlaFxur9mmdPF0/9mTgAuC+\n+PwwYTR3CSFQiY+Xjn5p7zFQnZCv/syaTzgXs5v89WdWts4C+enPnxK+MDiB8Ad9AvDf5K8vq9W5\nN27LS18C/DLwHPC/wBHgO8Dl5K8/q9W5OG6ruz9HI+B7gSeA7wOfyrRfD7wE3Evr/zk0A3gDuB94\nEfgKcCIwCSh/06cnPm+lanVOiNvy1J9ZVwGr4nre+jMrW2cv+enPN4E7gP8iBPtBwmgub31Zrc4n\n4ra89CWE6Y4LCLMKE4DfAk4jf/1Zrc7pcVue+pMp8fFUwkcmLwDeT98o6TZCoa3064TRx0fj8y8D\ntwIHKvZ7czSLqqJanZ8n9G2e+rNsPOEP0qnxed76s6yyzjz9fs4knGv5RcLI+BHgGvLXl9Xq/F3y\n1ZdlnyQMOL8D3AX8FfnrT6heZ17/XwfC/NGfVLR1EuaaWmky4VxB2fnAtwgnMifHtimEK2S2UrU6\n/6Vin05a359li4DHMs+3ka/+LKusM6uT1vbnlcA9mee/B/w9+fvdHKjOrE7y87tZ9hfAH5Hf382y\nFcCnK9o6qdGfzZ6imQD8Qlw/EVgQC5qc2ecyWv9D30eYez0zPp9P+DTAo4QTRcTHtaNf2nsMVGfe\n+rPsavqmPQDWka/+LKusc0pmvdX9uY3wSakTCKO2+YSRct5+NweqM4+/m++Pjx8gzGs/TD5/N7N1\nXkaoM0+/m8wgTMtsJMwplb/09FXCRydfInRkq+e7AH4NeIFQ0xrCCc0Owjxinj46VVnnRPLZnycC\nP6LvDzzksz+r1Zm3/ryRvo8frgSOJZ99WVnnePLXlwD/RqhzI3BRbMtjf1arM4/9KUmSJEmSJEmS\nJEmSJEmSJGnklYCPDPM1LgR+cwj7LSV8q3Ok9pfq1oybbkt508vwbwZ/EfAW8B8N7vcPI7y/JOXa\niYRr/WwkfOvx47H9c4SbwmzmvUFXAu4kfIP3FcLF1h4hfOvw1rhPJ+Hr8g8SviL/dcLX5gGeBs6J\n6wuA7wE/AFbHWiotI3yD8CXC18M/SLhWfPlGC+cDvwM8S7iq53rC18o7q+zXRd/1l+p53ez+pxO+\nXbkx1vtLVWqVpFy5HPjHzPP3xcf2TNtXCSEKIaC/ENeXES5HO4nwVfjd8bhO4B36pjvupS8oywF/\nCuHKfOXgvwn48yr17SVcDiBbW+WNFrJfZf9D4C8H2C/7vJ7XzT5/jnAhNAj/rScgNWC0bvghZW0C\nPka4a875hJtFAMwjjIo3xfVZmWPWxcctcekBfk64i1D5Otm76ZvqeDC+dlmBcDGsWYQR/Abg9wkX\ncqpW38OEy90eqXiNsumEa5ZsAv60otaBbshQz+uWnQRMBf45Pv858D8DvK5UlQGvVtgOzCFMxdxG\nGEUfR7i87OXArxJuZnJ85pj/i4/vZNbLz8vnkrLz7AWqz7uvj+89BziL996Epuy3Yy3nEKaF2qrs\n87fA38RalzL46Loc4PW8rjRiDHi1whTCrcgeIkxtzKEvzH9MGL1+vPqhg/oAYZQO8Angmcy2XsK/\nDs4j3JwCwvz7GRWvUYivUwJuJlxV9CTCidDsFSffR5gqAviDTHvlfo2+bnnftwlz8+UpmuNwikYN\nMuDVCr9CmF/eQDixehvh3rJfIUy/PBa3VzPYJ2J+CHyGcJL1ZODuiu0/IoTxKsKJzu8BH6rYpw14\ngDCd8iLw17G2RwnX386eDP064Y47b2RqKu/3In1TRL11vG7l/hA+Lrks1vrveGlYSUepTvJxMwkp\nNxzBKyXD/ay7JEmSJEmSJEmSJEmSJEmSpPz7f8dcrFjNGODdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f2974281c50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_resampled_stats(100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can use `plot_resampled_stats` in an interaction:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.67407589545\n",
"90% CI [ 69.60129748 75.13161693]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEPCAYAAABIut/fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEqdJREFUeJzt3X2MXNV9h/FnWGPA0ODdQvyerGsgjXFbTBqXClAGy7FM\nW2EwCi8pravQiJYIo7QV4EoNu0AJiQpJ30BteJEDwY2TGNc0KsXGTEqS8pLgV4yD7WLVdmFNgp2A\n1DZgtn+cM97r8axnZndm5+7x85Gu5s659878cjz57uHMnXtBkiRJkiRJkiRJkiRJkiTpmHQi8Byw\nAdgKfD62dwFrgFeAJ4HxmWOWAtuBbcD8EatUktSwcfFxDPAscAHwReCm2H4zcFdcn0n4Y3A80A3s\nAI4bqUIlSUMzDngBOJswOp8Q2yfG5xBG7zdnjnkCOG+kCpQkDahndH0cYVTeBzwNvEQI9764vY+B\nsJ8M7MkcuweY0pRKJUkNGVPHPu8B5wCnAv8GXFSxvT8ugznaNklSi9QT8GU/Bb4NfIQwap8IvA5M\nAvbFffYC0zLHTI1th5kxY0b/zp07h1KvJB3LdgJn1LtzrSma0xg4Q+Yk4OPAemA1sDi2LwZWxfXV\nwFXAWGA6cCbw/BEV7txJf39/7pdbb7217TWkUudoqNE6rTPvCzCj3nCH2iP4ScAywh+C44CHgadi\nyK8ArgV2AVfE/bfG9q3Au8D1OEUjSW1RK+A3A+dWaX8TmDfIMXfGRZLURp6jfhTFYrHdJdRlNNQ5\nGmoE62w262yvQpvetz/OJ0mS6lQoFKCB3HYEL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwGtU\n6ezsolAo1Fw6O7vaXarUdp4Hr1GlUCiwbuWWmvvNXTQLP2NKjefBS5IAA16SkmXAS1KiDHhJSpQB\nL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqUAS9JiTLgJSlRBrwkJcqAl6REGfCS\nlCgDXpISVSvgpwFPAy8BW4Alsb0H2AOsj8vFmWOWAtuBbcD8JtYqSWrAmBrb3wE+C2wATgF+CKwB\n+oF74pI1E7gyPk4B1gJnAe81r2RJUj1qjeBfJ4Q7wNvAy4Tghuo3fl0ILCf8YdgF7ADmDLtKSVLD\nGpmD7wZmA8/G5zcAG4EHgPGxbTJh6qZsDwN/ECRJI6jegD8F+CZwI2Ekfx8wHTgHeA24+yjH9g+n\nQEnS0NSagwc4HvgW8AiwKrbty2y/H3g8ru8lfDFbNjW2HaGnp+fQerFYpFgs1lOvJB0zSqUSpVJp\nyMdXm0ev3L4M+Anhy9aySYSRO7H9o8AnCV+uPkqYdy9/yXoGR47i+/v7HdircYVCgXUrt9Tcb+6i\nWfgZU2oKhQLUzu1Dao3gzweuATYRTocE+HPgasL0TD/wKnBd3LYVWBEf3wWuxyka1aGzs4sDB/a3\nuwwpKXX/JWgyR/A6TCMjc0fwOlY1OoL3l6ySlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXK\ngJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4\nSUqUAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYmqFfDTgKeBl4AtwJLY\n3gWsAV4BngTGZ45ZCmwHtgHzm1msJKl+tQL+HeCzwNnAecBngA8DtxAC/izgqfgcYCZwZXxcANxb\nx3tIklqgVvi+DmyI628DLwNTgEuAZbF9GXBpXF8ILCf8YdgF7ADmNK9cSVK9GhlddwOzgeeACUBf\nbO+LzwEmA3syx+wh/EGQJI2wMXXudwrwLeBG4K2Kbf1xGUzVbT09PYfWi8UixWKxzlIk6dhQKpUo\nlUpDPr6egD+eEO4PA6tiWx8wkTCFMwnYF9v3Er6YLZsa246QDXhJ0pEqB7+9vb0NHV9riqYAPABs\nBb6caV8NLI7rixkI/tXAVcBYYDpwJvB8QxVJkpqi1gj+fOAaYBOwPrYtBe4CVgDXEr5MvSJu2xrb\ntwLvAtdz9OkbSVKL1Ar47zL4KH/eIO13xkWS1Eaeoy5JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpIS\nZcBLUqIMeElKlAGvJHV0dFAoFGounZ1d7S5Vapl6ryYpjSoHDx5k3cotNfebu2jWCFQjtYcjeElK\nlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ\n8JKUKANekhJlwEtSogx4SUqUAS9Jiaon4B8E+oDNmbYeYA+wPi4XZ7YtBbYD24D5TalSktSwegL+\nIWBBRVs/cA8wOy7/GttnAlfGxwXAvXW+hySpyeoJ32eA/VXaC1XaFgLLgXeAXcAOYM5Qi5MkDd1w\nRtc3ABuBB4DxsW0yYeqmbA8wZRjvIUkaojFDPO4+4La4fjtwN3DtIPv2V2vs6ek5tF4sFikWi0Ms\nRZLSVCqVKJVKQz5+qAG/L7N+P/B4XN8LTMtsmxrbjpANeEnSkSoHv729vQ0dP9QpmkmZ9csYOMNm\nNXAVMBaYDpwJPD/E95AkDUM9I/jlwMeA04DdwK1AETiHMP3yKnBd3HcrsCI+vgtczyBTNJKk1qon\n4K+u0vbgUfa/My6SpDbyHHVJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqU\nAS9JiTLgJSlRBrwkJcqAV0t1dnZRKBRqLpKab6g3/JDqcuDAftat3FJzv7mLZo1ANdKxxRG8JCXK\ngJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4\nSUpUPQH/INAHbM60dQFrgFeAJ4HxmW1Lge3ANmB+c8qUJDWqnoB/CFhQ0XYLIeDPAp6KzwFmAlfG\nxwXAvXW+hySpyeoJ32eA/RVtlwDL4voy4NK4vhBYDrwD7AJ2AHOGXaUkqWFDHV1PIEzbEB8nxPXJ\nwJ7MfnuAKUN8D0nSMDTjln39cTna9iP09PQcWi8WixSLxSaUIknpKJVKlEqlIR8/1IDvAyYCrwOT\ngH2xfS8wLbPf1Nh2hGzAS5KOVDn47e3tbej4oU7RrAYWx/XFwKpM+1XAWGA6cCbw/BDfQ5I0DPWM\n4JcDHwNOA3YDnwPuAlYA1xK+TL0i7rs1tm8F3gWu5+jTN5KkFqkn4K8epH3eIO13xkWS1Eaeoy5J\niTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnwOqZ1\ndHRQKBTqWjo7u9pdrtSQZtzRSRq1Dh48yLqVW+rad+6iWS2uRmouR/CSlCgDXpISZcBLUqIMeElK\nlAEvSYky4CUpUQa8JCXKgJekRBnwkpQoA16SEmXAS1KiDHhJSpQBL0mJMuAlKVHDvVzwLuBnwEHg\nHWAO0AV8Hfhg3H4FcGCY7yNJatBwR/D9QBGYTQh3gFuANcBZwFPxuSRphDVjiqZQ8fwSYFlcXwZc\n2oT3kCQ1qBkj+LXAD4BPx7YJQF9c74vPlZjOzq66bnMnqX2GOwd/PvAacDphWmZbxfb+uCgxBw7s\nr+tWd97mTmqf4Qb8a/HxDeAxwjx8HzAReB2YBOyrdmBPT8+h9WKxSLFYHGYpkpSWUqlEqVQa8vHD\nCfhxQAfwFnAyMB/oBVYDi4EvxMdV1Q7OBrwk6UiVg9/e3t6Gjh9OwE8gjNrLr/M14EnCfPwK4FoG\nTpOUJI2w4QT8q8A5VdrfBOYN43UlSU3gL1klKVEGvCQlyoCXpEQZ8JKUKANekhJlwEtSogx4SUqU\nAS9JiTLgJSlRBrwkJcqAl6REGfCSlCgDXpISZcBLUqIMeElKlAEvSYky4CUpUQa8JCXKgJekRBnw\nkpQoA16qU0dHB4VCoebS2dnV7lIlAMa0uwBptDh48CDrVm6pud/cRbNGoBqpNkfwkpQoA16SEmXA\nS1KiDHhJSpQBL0mJMuAlKVGtCvgFwDZgO3Bzi95DLdDZ2VXXud6S8q8V58F3AH8HzAP2Ai8Aq4GX\nW/BeLVUqlSgWi+0uo6Zm1nngwP6WnOu9YcvznDNrzlDLGjGjpc5j8bPZSqOlzka1YgQ/B9gB7ALe\nAf4JWNiC92m5UqnU7hLqMhrq3LDlhXaXUJdm1DkSv3gdDf/mYJ3t1ooR/BRgd+b5HuA3WvA+qtPa\ntWvZtGlTzf2cemkOf/GqvGhFwPe34DU1DL09t/Hd7z3T7jIkjbBWDNnOA3oIX7QCLAXeA76Q2WcH\nMKMF7y1JKdsJnNHOAsbEIrqBscAG4MPtLEiS1DwXAz8ijNSXtrkWSZIkSY3YBWwC1gPPx7Yewtk1\n6+OyoNqBI2w88E3C+fpbCWf+dAFrgFeAJ+M+7VZZZ/k7jzz154cytawHfgosIX/9Wa3OG8lffy4F\nXgI2A48CJ5C/voTqdfaQr76E8G+8GdgS1yGf/Vmtzh5y1p+vEjov61bgT9pQy9EsAz4V18cApwJf\nBG6KbTcDd7WhrkrV6sxjf5YdB7wGTCOf/VmWrTNP/dkN/CchLAG+Diwmf33ZTfU689SXALMIoXki\n4UeZawgnfOStPwers6H+HKlr0VQ7WydPJ12fClwIPBifv0sYzV1CCFTi46UjX9phBqsT8tWfWfMI\n38XsJn/9mZWts0B++vNnhB8MjiP8QR8H/Df568tqde6N2/LSlwC/DDwH/C9wEPgOcDn5689qdS6K\n2+ruz5EI+H5gLfAD4NOZ9huAjcADtP8/h6YDbwAPAS8CXwFOBiYAfXGfvvi8narVOS5uy1N/Zl0F\nLI/reevPrGyd/eSnP98E7gb+ixDsBwijubz1ZbU618ZteelLCNMdFxJmFcYBvwVMJX/9Wa3OaXFb\nnvqTSfHxdMIpkxcC72dglHQHodB2+nXC6OOj8fmXgduB/RX7vTmSRVVRrc7bCH2bp/4sG0v4g3R6\nfJ63/iyrrDNPn88ZhO9afpEwMn4MuIb89WW1On+XfPVl2acIA87vAPcCXyJ//QnV68zr/9eBMH/0\npxVt3YS5pnaaSPiuoOwC4NuELzInxrZJhCtktlO1Ov+lYp9u2t+fZQuBJzLPt5Gv/iyrrDOrm/b2\n55XA/Znnvwf8Pfn7bA5WZ1Y3+flslv0l8Mfk97NZdifwRxVt3dToz1ZP0YwDfiGunwzMjwVNzOxz\nGe3/R3+dMPd6Vnw+j3A2wOOEL4qIj6tGvrTDDFZn3vqz7GoGpj0gXFU0T/1ZVlnnpMx6u/tzG+FM\nqZMIo7Z5hJFy3j6bg9WZx8/m++PjBwjz2o+Sz89mts7LCHXm6bPJdMK0zAbCnFL5R09fJZw6uZHQ\nke2e7wL4NcKljTcCKwlfaHYR5hHzdOpUZZ3jyWd/ngz8mIE/8JDP/qxWZ9768yYGTj9cBhxPPvuy\nss6x5K8vAf6dUOcG4KLYlsf+rFZnHvtTkiRJkiRJkiRJkiRJkiRJUvOVgI8M8zU+BvzmEPa7jvCr\nzmbtL9WtFTfdlvKmn+HfDP4i4C3gPxrc7x+avL8k5drJhGv9bCD86vETsf1zhJvCbObwoCsB9xB+\nwfsy4WJrjxF+dXh73Keb8HP5Rwg/kf8G4WfzAE8D58b1+cD3gR8CK2ItlZYQfkG4kfDz8A8SrhVf\nvtHCBcDvAM8Sruq5hvCz8u4q+/UwcP2lel43u/8ZhF9Xboj1/lKVWiUpVy4H/jHz/H3xsTPT9lVC\niEII6M/H9SWEy9FOIPwUfnc8rht4j4HpjgcYCMpywJ9GuDJfOfhvBv6iSn17CZcDyNZWeaOF7E/Z\n/xD4q0H2yz6v53Wzz58jXAgNwv/Wk5AaMFI3/JCyNgEfJ9w15wLCzSIA5hJGxZvi+szMMavj45a4\n9AE/J9xFqHyd7N0MTHU8El+7rEC4GNZMwgh+PfD7hAs5VavvUcLlbg9WvEbZNMI1SzYBf1ZR62A3\nZKjndctOASYD/xyf/xz4n0FeV6rKgFc7bAdmE6Zi7iCMok8gXF72cuBXCTczOTFzzP/Fx/cy6+Xn\n5e+SsvPsBarPu6+J7z0bOJvDb0JT9tuxlnMJ00IdVfb5W+BvYq3XcfTRdTnA63ldqWkMeLXDJMKt\nyL5GmNqYzUCY/4Qwev1E9UOP6gOEUTrAJ4FnMtv6Cf91cD7h5hQQ5t/PrHiNQnydEnAL4aqipxC+\nCM1ecfJ9hKkigD/ItFfu1+jrlvd9mzA3X56iOQGnaNQgA17t8CuE+eX1hC9W7yDcW/YrhOmXJ+L2\nao52RsyPgM8QvmQ9FbivYvuPCWG8nPBF5/eBD1Xs0wE8TJhOeRH461jb44Trb2e/DP0G4Y47b2Rq\nKu/3IgNTRP11vG7l/hBOl1wSa/0eXhpW0jGqm3zcTELKDUfwSslwz3WXJEmSJEmSJEmSJEmSJEmS\nlH//D7GQuCrLS9UsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d796cd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"slider = widgets.IntSliderWidget(min=10, max=1000, value=100)\n",
"interact(plot_resampled_stats, n=slider, xlim=fixed([1, 15]))\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exercise: write a new class called `StdResampler` that inherits from `Resampler` and overrides `sample_stat` so it computes the standard deviation of the resampled data."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class StdResampler(Resampler): \n",
" \"\"\"Computes the sampling distribution of the standard deviation.\"\"\"\n",
" \n",
" def sample_stat(self, sample):\n",
" \"\"\"Computes a sample statistic using the original sample or a\n",
" simulated sample.\n",
" \"\"\"\n",
" return sample.std()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Test your code using the cell below:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.30056137605\n",
"90% CI [ 13.70615766 18.05008376]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEPCAYAAACjjWTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEMFJREFUeJzt3X+wXOVdx/H3chNQCU3uHTS/22AIDikqQY1VdNhmYgwj\nQwAtPxSNigwzdAhatRBUcu/YQdopFH/BVPkxsZTYFNKYjNMOKWEdsBasDSSXEEhSMpKY3MSSW8BB\nG8L1j+fZ7GZzf2x2994N9/t+zZzZc549e85zH9jPPnnOL5AkSZIkSZIkSZIkSZIkSVKLzAaeBl4C\neoEVubwb2AtsydOlVZ9ZCewEdgBLxqqikqTGTQMuzPOTgFeA84FVwCcGWX8+8AIwEZgD7AJOG/Va\nSpKGNVIQHyCFN8DbwMvAzLxcGGT9ZcAa4AiwhxT2C5uupSSpKSfT654DLAC+mZdvAV4EHgKm5LIZ\npOGdsr1UfhwkSW1Sb9hPAh4HbiX18B8AziEN8ewH7hnmswPNVFCS1LwJdawzEXgCeBRYn8sOVr3/\nILAxz+8jHdQtm5XLjjN37tyB3bt3n3RlJSm43cC5jXxwpJ59gTRMsx24r6p8etX8lcC2PL8BuBY4\nndTznwc8f0Jtd+9mYGDAaWCAVatWtb0Op8pkW9gWtsXwEzC3kaCHkXv2FwPXA1tJp1gC3AFcRxrC\nGQBeA27K720H1ubXd4GbcRhHktpupLB/lsF7/18d5jN35UmSdIrwHPg2KxaL7a7CKcO2qLAtKmyL\n1hjsXPmxMJDHnyRJdSoUCtBgbtuzl6QADHtJCsCwl6QADPsW6ezsolAoUCgU6Ozsand1JOk4HqBt\nkUKhwOZ1vQAsuuoCxtvfJ6n9PEArSRqWYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2\nkhSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSA\nYd+Ezs4uCoVC+YnvknTKMuyb0N9/mM3retm8rrfdVZGkYRn2khSAYS9JARj2khSAYS9JARj2khSA\nYS9JAYwU9rOBp4GXgF5gRS7vAjYBrwJPAlOqPrMS2AnsAJa0srKSpMaMFPZHgD8APgx8BPg4cD5w\nOynszwOeyssA84Fr8utS4P469iFJGmUjBfEB4IU8/zbwMjATuBxYnctXA1fk+WXAGtKPxB5gF7Cw\nddWVJDXiZHrdc4AFwHPAVKAvl/flZYAZwN6qz+wl/ThIktpoQp3rTQKeAG4F3qp5byBPQxn0ve7u\n7mPzxWKRYrFYZ1UkKYZSqUSpVGrJtuoJ+4mkoP8CsD6X9QHTSMM804GDuXwf6aBu2axcdoLqsJck\nnai2I9zT09PwtkYaxikADwHbgfuqyjcAy/P8cio/AhuAa4HTgXOAecDzDddOktQSI/XsLwauB7YC\nW3LZSuBuYC1wA+lA7NX5ve25fDvwLnAzww/xSJLGwEhh/yxD9/4XD1F+V54kSacIz4GXpAAMe0kK\nwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLBvQGdnF4VCod3VkKS6GfYN6O8/zOZ1ve2uhiTV\nzbCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCX\npAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpADq\nCfuHgT5gW1VZN7AX2JKnS6veWwnsBHYAS1pSS0lSU+oJ+0eApTVlA8C9wII8fTWXzweuya9Lgfvr\n3IckaRTVE8TPAIcHKS8MUrYMWAMcAfYAu4CFjVZOktQazfS6bwFeBB4CpuSyGaThnbK9wMwm9iFJ\naoFGw/4B4BzgQmA/cM8w6w40uA9JUotMaPBzB6vmHwQ25vl9wOyq92blshN0d3cfmy8WixSLxQar\nIknjU6lUolQqtWRbjYb9dFKPHuBKKmfqbAAeIx28nQnMA54fbAPVYS9JOlFtR7inp6fhbdUT9muA\nS4CzgdeBVUCRNIQzALwG3JTX3Q6sza/vAjfjMI4ktV09YX/dIGUPD7P+XXkKq6Ojg0KhwJQpnRw+\n/Ea7qyNJngM/Go4ePcrmdb309w92xqokjT3DXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpIC\nMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwl\nKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDD\nXpICMOwlKQDDXpICqCfsHwb6gG1VZV3AJuBV4ElgStV7K4GdwA5gSWuqKUlqRj1h/wiwtKbsdlLY\nnwc8lZcB5gPX5NelwP117kOSNIrqCeJngMM1ZZcDq/P8auCKPL8MWAMcAfYAu4CFTddSktSURnvd\nU0lDO+TXqXl+BrC3ar29wMwG9yFJapFWDLEM5Gm49yVJbTShwc/1AdOAA8B04GAu3wfMrlpvVi47\nQXd397H5YrFIsVhssCqSND6VSiVKpVJLttVo2G8AlgOfzq/rq8ofA+4lDd/MA54fbAPVYS9JOlFt\nR7inp6fhbdUT9muAS4CzgdeBO4G7gbXADaQDsVfndbfn8u3Au8DNOIwjSW1XT9hfN0T54iHK78qT\nJOkU4TnwkhSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2ders7KJQ\nKFAoFNpdFUk6aYZ9nfr7D7N5XS+b1/W2uyqSdNIMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAM\ne0kKwLCXpAAMe0kKwLAfRR0dHcdusdDZ2dXu6kgKbEK7KzCeHT169NjtFRZddUGbayMpMnv2khSA\nYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khRAs3e9\n3AO8CRwFjgALgS7gS8CH8vtXA/1N7keS1IRme/YDQBFYQAp6gNuBTcB5wFN5WZLURq0YxinULF8O\nrM7zq4ErWrAPSVITWtGz/zrwLeDGXDYV6MvzfXlZktRGzY7ZXwzsB36YNHSzo+b9gTydoLu7+9h8\nsVikWCw2WRVJGl9KpRKlUqkl22o27Pfn10PAV0jj9n3ANOAAMB04ONgHq8NeknSi2o5wT09Pw9tq\nZhjnh4Cz8vyZwBJgG7ABWJ7LlwPrm9iHJKkFmunZTyX15svb+SLwJGn8fi1wA5VTLyVJbdRM2L8G\nXDhI+RvA4ia2K0lqMa+glaQADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJ\nCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwHyMdHR0UCgUKhQKdnV3tro6k\nYJp5Bu2419nZRX//4ZZs6+jRo2xe1wvAoqsuaMk2Jale9uyH0d9/mM3reo+FtCS9Xxn2khSAYS9J\nARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYS9JARj2khSAYd8G3tte\n0lgbrfvZLwXuAzqAB4FPj9J+Wu7ZZ5/lnXfeGdV9eG97SWNtNHr2HcDfkAJ/PnAdcP4o7KflDh06\nxKJFi/jTlT3cdOPN7a5OOKVSqd1VOGXYFhW2RWuMRtgvBHYBe4AjwD8Cy0ZhPy333nvv8YGzJnP3\nn3yeX7tseburE45f6grbosK2aI3RCPuZwOtVy3tzmSSpTUZjzH5gFLY5Jk477TTefOt73PmZWzhw\ncH+7qyNJLVMYhW1+BOgmjdkDrATe4/iDtLuAuaOwb0kaz3YD57a7EmUTSBWaA5wOvMD75ACtJOnk\nXAq8QurBr2xzXSRJkiS12lJgB7ATuK3NdRlrs4GngZeAXmBFLu8CNgGvAk8CU9pSu/boALYAG/Ny\n1LaYAjwOvAxsB36WuG2xkvQd2QY8BpxBnLZ4GOgj/e1lw/3tK0lZugNYMkZ1rEsHaVhnDjCReGP5\n04AL8/wk0jDX+cBngE/m8tuAu8e+am3zCeCLwIa8HLUtVgO/m+cnAJOJ2RZzgO+QAh7gS8By4rTF\nLwILOD7sh/rb55MydCKp3XZxCt3+5ueAr1Ut356nqNYDi0m/ylNz2bS8HMEs4OvAR6n07CO2xWRS\nwNWK2BZdpE5QJ+lHbyPwS8RqizkcH/ZD/e0rOX505GukMyGHNJa/BF5sVTGH9Av+HOk/ZF8u76Py\nH3a8+xzwx6TTcssitsU5wCHgEeDbwN8DZxKzLd4A7gH+E/gvoJ80hBGxLcqG+ttnkDK0bMQ8Hcuw\nf99ebNVik4AngFuBt2reGyBGO10GHCSN1w91rUeUtpgAXATcn1//hxP/xRulLeYCv0/qDM0gfVeu\nr1knSlsMZqS/fdh2Gcuw30c6SFk2m+N/mSKYSAr6L5CGcSD9Wk/L89NJITje/TxwOfAasAZYRGqT\niG2xN0//npcfJ4X+AeK1xU8D3wC+C7wLrCMN/0Zsi7KhvhO1eTorlw1pLMP+W8A8KhdbXUPlwFwE\nBeAh0tkW91WVbyAdhCK/rmf8u4P0P+o5wLXAZuA3idkWB0jDm+fl5cWks1E2Eq8tdpDGnX+Q9H1Z\nTPq+RGyLsqG+ExtI353TSd+jecDzY167YUS+2OoXSOPTL5CGL7aQTkXtIh2oHO+nlQ3lEio/+lHb\n4idJPfsXSb3ZycRti09SOfVyNelfw1HaYg3pWMX3SR2A32H4v/0OUpbuAH55TGsqSZIkSZIkSZIk\nSZIkSZIk6f2uBPxUk9u4hHQ158mudxPpgrFWrS81ZDQeOC6dalpxP5WPku5l9G8nud7nW7y+JL1v\nnAn8M+lq4m3Ax3L5naRLvrdxfOiVgHtJV5m+DPwM8BXSVYV/nteZQ7qS8FHSJfZfJl12D+mhMRfl\n+SWk+6/8B7A216XWCtJVnC+SHqDxIWA/6R42W0hXQ18GfJN0p8pNwI/kOtSu1w384Ulst3r9c0lX\nT76Q6/ujg9RVkk5Zvwr8XdXyB/JrZ1XZP5ACFVJY/0WeX0G6pHwq6b4gr+fPzSHdjqI8JPIQldAs\nh/3ZwL9Q+RG4DfizQeq3j3SZfnXdVpEetlJWfdn67wGfHWK96uV6tlu9/BywLM+fXlVv6aSdMk82\nUShbSQ+luJvUm30zly8i9Za35vn5VZ8p3z+nN099pHuIfIfK3f9epzIc8mjedlmBdJOt+aSe/Rbg\nt4APDlG/x4DfAI7WbKNsNuleJVuBP6qp61C3ba5nu2WTSLf5/ae8/H3gnSG2K43IsFc77KTy+LVP\nkXrXZwB/S+r1/wTpIR4/UPWZ/8uv71XNl5fLx56qx+ULDD5OvynvewHwYeDGQdb5lVyXi0hDRx2D\nrPPXwF/lut7E8L3ucpjXs11pVBj2aofpwP+Snj/7WVLwloP9u6Re7ccG/+iwPkjl0Wy/DjxT9d4A\n6V8NF5MekgFpvH5ezTYKeTsl0kNEJuf6vAWcVbXeB0jDSQC/XVVeu97Jbre87tuksfzyMM4ZOIyj\nJhj2aocfJ41HbyEdlP0U8D1Sb76X9DzN54b47HBn1rwCfJx0gHYy8EDN+/9NCuY1pIOk3wB+rGad\nDtKDVLaSDr7+Za7bRuBKjj+Q+mXScxoOVdWpvN63qQwjDdSx3dr1IZ2CuSLX9V+J9Tg+SRrUHI5/\nULOkKvbsNZ5EfTapJEmSJEmSJEmSJEmSJEmSpNb5f+4oC/CW12rBAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d737b10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_resampled_stats(n=100):\n",
" sample = weight.rvs(n)\n",
" resampler = StdResampler(sample, xlim=[0, 100])\n",
" resampler.plot_sample_stats()\n",
" \n",
"plot_resampled_stats()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When your `StdResampler` is working, you should be able to interact with it:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 1.29095098626\n",
"90% CI [ 15.13442137 19.27452588]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEPCAYAAACjjWTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEfVJREFUeJzt3XuMnNV9h/FnWNsk4GDvitZ3YteYCkNbII1LSyomluMa\nNcWENlxSWrelERJpoOkFMFLDboIIiQKhN1AbLnIhuHHAcY2iUAxmKtIEyMUGlsXBdrCKXbymgBOo\n2sYs2z/OGe94r7Mzszvr/T0f6dW875n3fefsgfnO8XlvIEmSJEmSJEmSJEmSJEmSpAZ5F/AUsB3o\nAj6Xy9uALcCLwCPAzIpt1gI7gR3AynGrqSSpLsfl1ynAk8AHgC8A1+Tya4Gb8/xS0g/DVGAhsAs4\nZrwqKkmq33HAd4HTSL32Wbl8dl6G1Ku/tmKbh4Gzx6uCkqTBVdPrPobUW+8GHgeeJwV9d36/m77g\nnwvsrdh2LzCvITWVJNVsShXrvAOcAcwA/hX4YL/3e/M0lOHekySNg2rCvuzHwDeA95F687OB/cAc\n4EBeZx+woGKb+bnsCIsXL+7dvXt3LfWVpMh2AyfXsuFIwzgn0nemzbuBDwHbgM3Amly+BtiU5zcD\nlwDTgEXAEuDpAbXdvZve3l6n3l5uuOGGptdhoky2hW1hWww/AYtrCXoYuWc/B1hH+lE4BrgXeCwH\n/gbgcmAPcFFevyuXdwFvA1fiMI4kNd1IYf8ccNYg5a8DK4bY5qY8SZImCM+Bb7JisdjsKkwYtkUf\n26KPbdEYhSZ9bm8ef5IkValQKECNuW3PXpICMOwlKQDDXpICMOwlKQDDXpICMOwlKQDDXpICMOwl\nKQDDXpICMOwlKQDDfgy0trZRKBQoFAq0trY1uzqS5L1xxkKhUGDrxk4All94OpP5b5U0frw3jiRp\nWIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9\nJAUwUtgvAB4Hngc6gatyeTuwF9iWp/MqtlkL7AR2ACsbWFdJUo2mjPD+IeBTwHZgOvB9YAvQC9ya\np0pLgYvz6zzgUeAU4J3GVVmSNFoj9ez3k4Ie4C3gBVKIw+A30F8NrCf9SOwBdgHL6q6lJKkuoxmz\nXwicCTyZlz8JPAPcBczMZXNJwztle+n7cZAkNUm1YT8deAC4mtTDvwNYBJwBvALcMsy2PpNPkpps\npDF7gKnAg8B9wKZcdqDi/TuBh/L8PtJB3bL5uWyA9vb2w/PFYpFisVhNfSUpjFKpRKlUasi+Rnpw\nbQFYB7xGOlBbNofUoyeXvx/4GOnA7P2kcfryAdqTGdi794HjkjRK9TxwfKSe/TnAZcCzpFMsAa4H\nLiUN4fQCLwFX5Pe6gA359W3gShzGkaSmGynsv8Xg4/rfHGabm/IkSZogvIJWkgIw7CUpAMNekgIw\n7CUpAMNekgIw7CUpAMNekgIw7CUpAMNekgIw7CUpAMNekgIw7BuktbWNQqFQviudJE0ohn2DHDz4\nBls3dh6+tbEkTSSGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCG\nvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgAjhf0C4HHgeaATuCqXtwFbgBeBR4CZFdusBXYCO4CV\njaysJKk2I4X9IeBTwGnA2cAngFOB60hhfwrwWF4GWApcnF9XAbdX8RmSpDE2UhDvB7bn+beAF4B5\nwPnAuly+Drggz68G1pN+JPYAu4Bljavu0aelpeXws2lbW9uaXR1JQU0ZxboLgTOBp4BZQHcu787L\nAHOBJyu22Uv6cQirp6fn8HNpl194epNrIymqasN+OvAgcDXwZr/3evM0lEHfa29vPzxfLBYpFotV\nVkWSYiiVSpRKpYbsq5qwn0oK+nuBTbmsG5hNGuaZAxzI5ftIB3XL5ueyASrDXpI0UP+OcEdHR837\nGmnMvgDcBXQBt1WUbwbW5Pk19P0IbAYuAaYBi4AlwNM1106S1BAj9ezPAS4DngW25bK1wM3ABuBy\n0oHYi/J7Xbm8C3gbuJLhh3gkSeNgpLD/FkP3/lcMUX5TniRJE4TnwEtSAIa9JAVg2EtSAIa9JAVg\n2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtS\nAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVg2EtSAIa9JAVQTdjfDXQD\nz1WUtQN7gW15Oq/ivbXATmAHsLIhtZQk1aWasL8HWNWvrBe4FTgzT9/M5UuBi/PrKuD2Kj9DkjSG\nqgniJ4A3BikvDFK2GlgPHAL2ALuAZbVWTpLUGPX0uj8JPAPcBczMZXNJwztle4F5dXyGJKkBptS4\n3R3AZ/L8Z4FbgMuHWLd3sML29vbD88VikWKxWGNVJGlyKpVKlEqlhuyr1rA/UDF/J/BQnt8HLKh4\nb34uG6Ay7CVJA/XvCHd0dNS8r1qHceZUzH+EvjN1NgOXANOARcAS4OmaaydJaohqevbrgXOBE4GX\ngRuAInAGaYjmJeCKvG4XsCG/vg1cyRDDOJKk8VNN2F86SNndw6x/U54kSROE58BLUgCGvSQFYNhL\nUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCG\nvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGfR1aW9soFAoUCoVmV0WShmXY1+Hg\nwTfYurGTrRs7m10VSRqWYS9JARj2khSAYS9JAVQT9ncD3cBzFWVtwBbgReARYGbFe2uBncAOYGVj\nqilJqkc1YX8PsKpf2XWksD8FeCwvAywFLs6vq4Dbq/wMSdIYqiaInwDe6Fd2PrAuz68DLsjzq4H1\nwCFgD7ALWFZ3LSVJdam11z2LNLRDfp2V5+cCeyvW2wvMq/EzJp2WlpbD5+W3trY1uzqSApnSgH30\n5mm49wdob28/PF8sFikWiw2oysTW09Nz+Jz85Ree3uTaSJroSqUSpVKpIfuqNey7gdnAfmAOcCCX\n7wMWVKw3P5cNUBn2kqSB+neEOzo6at5XrcM4m4E1eX4NsKmi/BJgGrAIWAI8XXPtJEkNUU3Pfj1w\nLnAi8DLwaeBmYANwOelA7EV53a5c3gW8DVzJ8EM8kqRxUE3YXzpE+Yohym/KkyRpgvAceEkKwLCX\npAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAM\ne0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kKwLCXpAAMe0kK\nwLCXpACm1Ln9HuAnQA9wCFgGtAFfBd6b378IOFjn50iS6lBvz74XKAJnkoIe4DpgC3AK8FheliQ1\nUSOGcQr9ls8H1uX5dcAFDfgMSVIdGtGzfxT4HvDxXDYL6M7z3XlZktRE9Y7ZnwO8AvwMaehmR7/3\ne/MkSWqiesP+lfz6KvB10rh9NzAb2A/MAQ4MtmF7e/vh+WKxSLFYrLMqkjS5lEolSqVSQ/ZVT9gf\nB7QAbwLHAyuBDmAzsAb4fH7dNNjGlWEvSRqof0e4o6Oj5n3VE/azSL358n6+AjxCGr/fAFxO36mX\nkqQmqifsXwLOGKT8dWBFHfuVJDWYV9BKUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQFYNhLUgCGvSQF\nYNg3SUtLC4VCgUKhQGtrW7OrI2mSq/dGaKpRT08PWzd2ArD8wtObXBtJk509e0kKwLAfpdbWtsPD\nL5J0tDDsR+ngwTfYurHz8BCMJB0NDHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QA\nDHtJCsCwl6QADHtJCsCwl6QADHtJCsCwl6QADHtJCmCsHku4CrgNaAHuBD4/Rp8z5rZu3UpXVxcA\nxxzjb6Oko9NYpFcL8HekwF8KXAqcOgafMy6uvWYtD6zfzOMPf4fPdNzY8P1v73y64fs8WpVKpWZX\nYcKwLfrYFo0xFmG/DNgF7AEOAf8MrB6DzxknvfzOb63hTy6/noUnLW743rd3fveI5crHHra2tjX8\n8yYyv9R9bIs+tkVjjMUwzjzg5YrlvcCvjMHnTBotLS1HPNO2/MjD5Ree3qwqSZpkxiLse8dgn03T\n0tLCl++7lRPeM4MXd3WNyWf09PQY8JLGVGHkVUbtbKCdNGYPsBZ4hyMP0u4CGj8mIkmT227g5GZX\nomwKqUILgWnAdo7iA7SSpKGdB/yQ1INf2+S6SJIkSWq0VcAOYCdwbZPrMt4WAI8DzwOdwFW5vA3Y\nArwIPALMbErtmqMF2AY8lJejtsVM4AHgBaCLdPZa1LZYS/qOPAfcDxxLnLa4G+gm/e1lw/3ta0lZ\nugNYOU51rEoLaVhnITCVeGP5s4Ez8vx00jDXqcAXgGty+bXAzeNftab5M+ArwOa8HLUt1gF/lOen\nADOI2RYLgR+RAh7gq8Aa4rTFrwNncmTYD/W3LyVl6FRSu+1iAt3+5leBhyuWr8tTVJuAFaRf5Vm5\nbHZejmA+8CjwQfp69hHbYgYp4PqL2BZtpE5QK+lH7yHgQ8Rqi4UcGfZD/e1rOXJ05GHSmZBDGs9f\ngsEutpo3jp8/kSwk/YI/RfoP2Z3Lu+n7DzvZfQn4S9JpuWUR22IR8CpwD/AD4MvA8cRsi9eBW4D/\nAP4TOEgawojYFmVD/e1zSRlaNmKejmfYT6qLreowHXgQuBp4s997vcRopw8DB0jj9UNd6xGlLaYA\nZwG359f/ZuC/eKO0xWLgT0mdobmk78pl/daJ0haDGelvH7ZdxjPs95EOUpYt4MhfpgimkoL+XtIw\nDqRf69l5fg4pBCe7XwPOB14C1gPLSW0SsS325ql8k6QHSKG/n3ht8cvAt4HXgLeBjaTh34htUTbU\nd6J/ns7PZUMaz7D/HrCEvoutLqbvwFwEBeAu0tkWt1WUbyYdhCK/bmLyu570P+oi4BJgK/B7xGyL\n/aThzVPy8grS2SgPEa8tdpDGnd9N+r6sIH1fIrZF2VDfic2k78400vdoCTChbqEb+WKrD5DGp7eT\nhi+2kU5FbSMdqJzsp5UN5Vz6fvSjtsUvkXr2z5B6szOI2xbX0Hfq5TrSv4ajtMV60rGKn5I6AH/I\n8H/79aQs3QH8xrjWVJIkSZIkSZIkSZIkSZIkSdLRrgS8r859nEu6mnO0611BumCsUetLNRmLB45L\nE00j7qfyQdK9jL4zyvX+ocHrS9JR43jgG6SriZ8DPprLP0265Ps5jgy9EnAr6SrTF4D3A18nXVX4\n2bzOQtKVhPeRLrH/Gumye0gPjTkrz68k3X/l+8CGXJf+riJdxfkM6QEa7wVeId3DZhvpaugPA0+S\n7lS5BfjZXIf+67UDfz6K/VaufzLp6sntub4/N0hdJWnC+m3gHyuWT8ivrRVl/0QKVEhh/bk8fxXp\nkvJZpPuCvJy3W0i6HUV5SOQu+kKzHPYnAv9G34/AtcBfDVK/faTL9CvrdgPpYStllZet/zHwxSHW\nq1yuZr+Vy08Bq/P8tIp6S6M2YZ5solCeJT2U4mZSb/YnuXw5qbf8bJ5fWrFN+f45nXnqJt1D5Ef0\n3f3vZfqGQ+7L+y4rkG6ytZTUs98G/D5w0hD1ux/4XaCn3z7KFpDuVfIs8Bf96jrUbZur2W/ZdNJt\nfv8lL/8U+J8h9iuNyLBXM+yk7/FrN5J618cCf0/q9f8i6SEe76rY5v/y6zsV8+Xl8rGnynH5AoOP\n02/Jn30mcBrw8UHW+c1cl7NIQ0ctg6zzt8Df5LpewfC97nKYV7NfaUwY9mqGOcD/kp4/+0VS8JaD\n/TVSr/ajg286rJPoezTbx4AnKt7rJf2r4RzSQzIgjdcv6bePQt5PifQQkRm5Pm8C76lY7wTScBLA\nH1SU919vtPstr/sWaSy/PIxzLA7jqA6GvZrhF0jj0dtIB2VvBH5M6s13kp6n+dQQ2w53Zs0PgU+Q\nDtDOAO7o9/5/kYJ5Pekg6beBn++3TgvpQSrPkg6+/nWu20PARzjyQOrXSM9peLWiTuX1fkDfMFJv\nFfvtvz6kUzCvynX9d2I9jk+SBrWQIx/ULKmCPXtNJlGfTSpJkiRJkiRJkiRJkiRJkiSpcf4fQI9Q\ndtjHGXsAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d78d110>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"slider = widgets.IntSliderWidget(min=10, max=1000, value=100)\n",
"interact(plot_resampled_stats, n=slider)\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Part Three\n",
"==========\n",
"\n",
"We can extend this framework to compute SE and CI for a difference in means.\n",
"\n",
"For example, men are heavier than women on average. Here's the women's distribution again (from BRFSS data):"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(72.697645732966876, 16.944043048498038)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"female_weight = scipy.stats.lognorm(0.23, 0, 70.8)\n",
"female_weight.mean(), female_weight.std()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And here's the men's distribution:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(89.063576984335782, 17.992335889366288)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"male_weight = scipy.stats.lognorm(0.20, 0, 87.3)\n",
"male_weight.mean(), male_weight.std()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I'll simulate a sample of 100 men and 100 women:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"female_sample = female_weight.rvs(100)\n",
"male_sample = male_weight.rvs(100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The difference in means should be about 17 kg, but will vary from one random sample to the next:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"15.521337537414979"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"male_sample.mean() - female_sample.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here's the function that computes Cohen's $d$ again:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def CohenEffectSize(group1, group2):\n",
" \"\"\"Compute Cohen's d.\n",
"\n",
" group1: Series or NumPy array\n",
" group2: Series or NumPy array\n",
"\n",
" returns: float\n",
" \"\"\"\n",
" diff = group1.mean() - group2.mean()\n",
"\n",
" n1, n2 = len(group1), len(group2)\n",
" var1 = group1.var()\n",
" var2 = group2.var()\n",
"\n",
" pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2)\n",
" d = diff / numpy.sqrt(pooled_var)\n",
" return d"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The difference in weight between men and women is about 1 standard deviation:"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.9271315108152719"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CohenEffectSize(male_sample, female_sample)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can write a version of the `Resampler` that computes the sampling distribution of $d$."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class CohenResampler(Resampler):\n",
" def __init__(self, group1, group2, xlim=None):\n",
" self.group1 = group1\n",
" self.group2 = group2\n",
" self.xlim = xlim\n",
" \n",
" def resample(self):\n",
" group1 = numpy.random.choice(self.group1, len(self.group1), replace=True)\n",
" group2 = numpy.random.choice(self.group2, len(self.group2), replace=True)\n",
" return group1, group2\n",
" \n",
" def sample_stat(self, groups):\n",
" group1, group2 = groups\n",
" return CohenEffectSize(group1, group2)\n",
" \n",
" # NOTE: The following functions are the same as the ones in Resampler,\n",
" # so I could just inherit them, but I'm including them for readability\n",
" def compute_sample_statistics(self, iters=1000):\n",
" stats = [self.sample_stat(self.resample()) for i in range(iters)]\n",
" return numpy.array(stats)\n",
" \n",
" def plot_sample_stats(self):\n",
" sample_stats = self.compute_sample_statistics()\n",
" summarize_sampling_distribution(sample_stats)\n",
" pyplot.hist(sample_stats, color=COLOR2)\n",
" pyplot.xlabel('sample statistic')\n",
" pyplot.xlim(self.xlim)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can instantiate a `CohenResampler` and plot the sampling distribution."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SE 0.160707033098\n",
"90% CI [ 0.6808076 1.1974013]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEPCAYAAACneLThAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEkZJREFUeJzt3X2QnVVhx/HvZhNUpLCbpoa84VIIxUApwSHSYocLxUyw\nHYI48lbbtE0dZrDA2HaEOFOyW20ERzP0RRjLWyNIbBRMQ61IeLktvkBQEkIIkSQl02waNkh2FTot\nJmH7xzmXvdns7n3u+96z38/MM/e553k7R8nvnj3PvecBSZIkSZIkSZIkSZIkSZIkDfNO4GlgE7AV\n+HwsnwqsB14CHgE6io5ZBmwHtgELG1ZTSVJFjo6vk4GngA8CXwA+HctvAG6O6/MIHwhTgC5gBzCp\nURWVJFXuaOAZ4DRCL316LD8+vofQi7+h6JiHgXMaVUFJ0uGy9LInEXrnfcATwAuEgO+L2/sYCvyZ\nQG/Rsb3ArJrUVJJUtskZ9nkLOBM4DvgucP6w7YNxGc1Y2yRJdZQl5At+BnwbeD+h93488AowA9gX\n99kDzCk6ZnYsO8xJJ500uHPnzkrqK0kT2U7g5HIOKDVcM42hb868C/gQsBFYByyJ5UuAtXF9HXAF\ncBRwIjAX2HBELXfuZHBwMNll+fLlTa+DbbN9ti+9BTipnICH0j35GcAqwofBJOBe4LEY9GuApcAu\n4LK4/9ZYvhU4CFyDwzWS1DSlQv554KwRyvcDF45yzIq4SJKazO+w10Eul2t2Feom5baB7Wt1qbev\nEm1Nuu5gHF+SJGXU1tYGZea2PXlJSpghL0kJM+QlKWGGvCQlzJCXpIQZ8pKUMENekhJmyEtSwgx5\nSUqYIS9JCTPkJSlhhrwkJcyQl6SEGfKSlDBDXpISZshLUsIMeY0LnZ1TaWtra8rS2Tm12c2X6sYn\nQ2lcaGtr4/EHtzTl2hdcejr+96hW4JOhJEmHMeQlKWGGvCQlzJCXpIQZ8pKUMENekhJmyEtSwgx5\nSUpYqZCfAzwBvABsAa6L5d1AL7AxLhcVHbMM2A5sAxbWsK6SpDJNLrH9APApYBNwDPBjYD0wCKyM\nS7F5wOXxdRbwKHAK8FbtqixJyqpUT/4VQsADvAG8SAhvGPmntYuB1YQPh13ADmBB1bWUJFWknDH5\nLmA+8FR8fy3wHHAX0BHLZhKGcQp6GfpQkCQ1WNaQPwb4JnA9oUd/O3AicCawF/jSGMc685MkNUmp\nMXmAKcADwH3A2li2r2j7ncBDcX0P4WZtwexYdoTu7u6313O5HLlcLkt9JWnCyOfz5PP5qs5RasrK\nNmAV8BrhBmzBDEIPnlh+NnAV4Ybr/YRx+MKN15M5sjfvVMM6jFMNS6VVMtVwqZ78ucDHgc2Er0oC\nfAa4kjBUMwi8DFwdt20F1sTXg8A1OFwjSU1TKuS/x8jj9t8Z45gVcZEkNZm/eJWkhBnykpQwQ16S\nEmbIS1LCDHlJSpghL0kJM+QlKWGGvCQlzJCXpIQZ8pKUMENekhJmyEtSwgx5SUpYloeGSElrb28v\nzNPdUB0dnfT372/4dTWxGPKa8A4dOtSUB5ZccOnpDb+mJh6HayQpYYa8JCXMkJekhBnykpQwQ16S\nEmbIS1LCDHlJSpghL0kJM+QlKWGGvCQlzJCXpIQZ8pKUMENekhJmyEtSwkqF/BzgCeAFYAtwXSyf\nCqwHXgIeATqKjlkGbAe2AQtrWVlJUnlKhfwB4FPAacA5wCeB9wE3EkL+FOCx+B5gHnB5fF0E3Jbh\nGpKkOikVwK8Am+L6G8CLwCzgYmBVLF8FXBLXFwOrCR8Ou4AdwILaVVeSVI5yetldwHzgaWA60BfL\n++J7gJlAb9ExvYQPBUlSE2R9/N8xwAPA9cDrw7YNxmU0I27r7u5+ez2Xy5HL5TJWRfXS2TmVgYH+\nZldDUpTP58nn81WdI0vITyEE/L3A2ljWBxxPGM6ZAeyL5XsIN2sLZseyIxSHvMaHgYH+pjzrFHze\nqTSS4R3gnp6ess9RarimDbgL2ArcWlS+DlgS15cwFP7rgCuAo4ATgbnAhrJrJUmqiVI9+XOBjwOb\ngY2xbBlwM7AGWEq4wXpZ3LY1lm8FDgLXMPZQjiSpjkqF/PcYvbd/4SjlK+IiSWoyv8MuSQkz5CUp\nYYa8JCXMkJekhBnykpQwQ16SEmbIS1LCDHlJSpghL0kJM+QlKWGGvCQlzJCXpIQZ8pKUMENekhJm\nyEtSwgx5SUqYIS9JCTPkJSlhhrwkJcyQl6SEGfKSlDBDXpISZshLUsIMeUlKmCEvSQkz5CUpYYa8\nJCXMkJekhGUJ+buBPuD5orJuoBfYGJeLirYtA7YD24CFNamlJKkiWUL+HmDRsLJBYCUwPy7fieXz\ngMvj6yLgtozXkCTVQZYAfhLoH6G8bYSyxcBq4ACwC9gBLKi0cpKk6lTTy74WeA64C+iIZTMJwzgF\nvcCsKq4hSarC5AqPux3467j+WeBLwNJR9h0cqbC7u/vt9VwuRy6Xq7AqkpSmfD5PPp+v6hyVhvy+\novU7gYfi+h5gTtG22bHsCMUhL0k60vAOcE9PT9nnqHS4ZkbR+kcY+ubNOuAK4CjgRGAusKHCa0iS\nqpSlJ78aOA+YBuwGlgM54EzCUMzLwNVx363Amvh6ELiGUYZrJEn1lyXkrxyh7O4x9l8RF0lSk/kd\ndklKmCEvSQkz5CUpYYa8JCXMkJekhBnykpQwQ16SEmbIS1LCDHlJSpghL0kJM+QlKWGGvCQlzJCX\npIQZ8pKUMENekhJmyEtSwip9xqvqqLNzKgMD/c2uhqQEGPLj0MBAP48/uKXh173g0tMbfk1J9eVw\njSQlzJCXpIQZ8pKUMENekhJmyEtSwgx5SUqYIS9JCTPkJSlhhrwkJcyQl6SEZQn5u4E+4PmisqnA\neuAl4BGgo2jbMmA7sA1YWJtqSpIqkSXk7wEWDSu7kRDypwCPxfcA84DL4+si4LaM15Ak1UGWAH4S\nGD4l4sXAqri+Crgkri8GVgMHgF3ADmBB1bWUJFWk0l72dMIQDvF1elyfCfQW7dcLzKrwGpKkKtVi\nquHBuIy1/Qjd3d1vr+dyOXK5XA2qIknpyOfz5PP5qs5Racj3AccDrwAzgH2xfA8wp2i/2bHsCMUh\nL01E7e3ttLW1NeXaHR2d9Pfvb8q1ld3wDnBPT0/Z56g05NcBS4Bb4uvaovL7gZWEYZq5wIYKryEl\n7dChQ015OAz4gJiJJEvIrwbOA6YBu4GbgJuBNcBSwg3Wy+K+W2P5VuAgcA1jD+VIkuooS8hfOUr5\nhaOUr4iLJKnJ/A67JCXMkJekhBnykpQwQ16SEmbIS1LCDHlJSpghL0kJM+QlKWGGvCQlzJCXpIQZ\n8pKUMENekhJmyEtSwgx5SUqYIS9JCTPkJSlhhrwkJcyQl6SEGfKSlDBDXpISZshLUsIMeUlKmCEv\nSQkz5CUpYYa8JCXMkJekhBnykpQwQ16SEja5yuN3AT8HDgEHgAXAVOCfgffG7ZcBA1VeR5JUgWp7\n8oNADphPCHiAG4H1wCnAY/G9JKkJajFc0zbs/cXAqri+CrikBteQJFWgFj35R4EfAZ+IZdOBvrje\nF99Lkpqg2jH5c4G9wK8Qhmi2Dds+GBdJUhNUG/J74+urwLcI4/J9wPHAK8AMYN9IB3Z3d7+9nsvl\nyOVyVVZFktKSz+fJ5/NVnaOakD8aaAdeB94NLAR6gHXAEuCW+Lp2pIOLQ16SdKThHeCenp6yz1FN\nyE8n9N4L5/ka8AhhfH4NsJShr1BKkpqgmpB/GThzhPL9wIVVnFeSVCP+4lWSEmbIS1LCDHlJSpgh\nL0kJM+QlKWGGvCQlzJCXpIQZ8pKUMENekhJW7QRlyersnMrAQH+zqyFJVTHkRzEw0M/jD25pyrUv\nuPT0plxXUnoMeWkCam9vp61t+EPd6q+jo5P+/v0Nv+5EZshLE9ChQ4ea8peqf6U2njdeJSlhhrwk\nJcyQl6SEGfKSlDBDXpISZshLUsIMeUlKmCEvSQkz5CUpYYa8JCXMaQ0kNUyz5syBiTtvjiEvqWGa\nNWcOTNx5cxyukaSEGfKSlLBxPVyzc+dO3nzzzWZXQ5JaVr1CfhFwK9AO3AncUu4J9u7dy6mnnsoJ\ns7tqXLXS+gcm3s0ZSWmqR8i3A/8AXAjsAZ4B1gEvlnOSAwcOMO2X38OdK9fWvoYlfHXN7fzT179c\n8fGbtmzgzNMX1LBG40fKbQPb1+pSb18l6jEmvwDYAewCDgBfBxbX4Trj1qYtzzS7CnWTctvA9rW6\n1NtXiXr05GcBu4ve9wIfqMN1JCmzifod/XqE/GAtTjJp0iT6B/Zz0xeurcXpyvJfvbsafk1J9TVR\nv6Nfj4+1c4Buws1XgGXAWxx+83UHcFIdri1JKdsJnNzsSkyOFekCjgI2Ae9rZoUkSbV1EfATQo99\nWZPrIkmSJKkci4BtwHbghjH2Oxs4CFzaiErVUJb25YCNwBYg35Ba1U6p9k0DHiYMx20B/qhhNave\n3UAf8PwY+/wdoe3PAfMbUakaKtW+3ye0azPwfeCMBtWrVrL8/wetmy1Z2pejydnSThiq6QKmMPq4\nfDvwOPCvwEcbVbkayNK+DuAFYHZ8P61RlauBLO3rBj4f16cBrzHOp8ko8tuE4B7tH9GHgX+L6x8A\nnmpEpWqoVPt+Ezguri8ivfZB62YLlG5fWdlSrwnKsv4g6lrgm8CrdapHvWRp31XAA4TfCQD8tFGV\nq4Es7dsLHBvXjyWE/MEG1a9aTwL9Y2y/GFgV158m/KOaXu9K1VCp9v0Q+Flcf5qhsGgVpdoHrZst\nULp9ZWVLvUJ+pB9EzRphn8XA7fF9Tb5f3yBZ2jcXmAo8AfwI+IPGVK0msrTvDuA04L8Jf/pf35iq\nNcRI7W+1IMxqKUN/taSilbMli7KypV5/Xmf5H/VW4Ma4bxv1+c5+vWRp3xTgLOB3gKMJvaenCOO8\n412W9n2GMIyTI/zmYT3wG8Dr9atWQw3/7zG1oAA4H/gT4NxmV6TGWjlbsigrW+oV8nuAOUXv5zD0\np0XB+wnDABDGlC4iDA2sq1OdailL+3YT/oz637j8ByEEWyHks7Tvt4C/ies7gZeBXyP0LFrd8PbP\njmUpOYPw19giSg99tJpWzpYsxkW2lPuDqHtorTvgWdp3KvAo4QbQ0YSbKPMaV8WqZGnfSmB5XJ9O\n+BCY2qD61UIX2W68nkPr3ZiEsdt3AuGeyzkNq03tdVH62zXQetlS0MXo7SsrW+rVkz8I/Bnw3ViR\nuwhTDV8dt3+lTtdtlCzt20b4iuFmwrQOdwBbG17TymRp3wrCP6DnCPd2Pg20ykT8q4HzCL283YQP\nqylx21cIAf9hQhD+D/DHTahjNUq17yagk6Ex6wOEm+2tolT7Wl2p9rVytkiSJEmSJEmSJEmSJEmS\nJEmqjTzhV5DVOI8we2O5+13N2HOLlLu/VJZWmRpWqsYg1c89cz5hXp4flrlfqR/nlLu/JI177wa+\nTZgu4XngY7H8JmBDLCsOuzxhGoVnCL+8PRv4FvAS8Nm4Txfhl4D3EX799w3gXXHbE4QJnQAWAj8A\nfgysiXUZ7jrCfN3PAfcD7yVMrdxLeFDDB4HfI0x38Cxhcrb3xDoM368b+Isyzlu8/8mEn69vivX9\n1RHqKknjzkeBfyx6X5iXvrOo7KuEIIUQ0oUHlFxHmN54OmFend3xuC7CT7wLQx93MRSWhZCfBvw7\nQ+F/A/BXI9RvD0M/Iy/UbTnw50X7dBSt/ynwxVH2K36f5bzF759maB7/o4rqLWVWr/nkpbFsBj4E\n3Ezovf48ll9A6B1vjuvFky4VZhDcEpc+4BfAfzI0Y+RuhoY97ovnLmgjTMg1j9CT3wj8IWGyrpHq\ndz/hMXmHhp2jYA7wSNz3L4fVdbSpbbOct+AYYCbwL/H9LwgzDkplMeTVDNsZerzZ5wi96XcAXyb0\n8gvT4L6z6Jg34+tbReuF94V7S8Xj7m2MPA6/Pl57PuGhJ58YYZ/fjXU5izBE1D7CPn9PeA7sGYSb\npWP1sgshnuW8Uk0Z8mqGGcD/AV8jDHPMZyjQXyP0Yj828qFjOoGh6XOvIjxGrWCQ8FfCuYSHnEAY\nj5877Bxt8Tx5woMnjov1eR34paL9jiUMG8HhDzEfvl+55y3s+wZhrL4wXPMOHK5RBQx5NcOvE8ab\nNxJutn6O8MzROwhDMQ/H7SMZ65syPwE+SbjxehxDU+kW/JQQyKsJNz9/QHjQSbF24F7C0MqzwN/G\nuj0EfITDb5B+g/CQlFeL6lTY71mGhosGM5x3+P4Qvkp5Xazr92mt58xKUk11ke0hEtKEYk9eKUnx\nOaySJEmSJEmSJEmSJEmSJEmSyvP/oi6U0qGuEpAAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f294d796fd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"resampler = CohenResampler(male_sample, female_sample)\n",
"resampler.plot_sample_stats()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example demonstrates an advantage of the computational framework over mathematical analysis. Statistics like Cohen's $d$, which is the ratio of other statistics, are relatively difficult to analyze. But with a computational approach, all sample statistics are equally \"easy\".\n",
"\n",
"One note on vocabulary: what I am calling \"resampling\" here is a specific kind of resampling called \"bootstrapping\". Other techniques that are also considering resampling include permutation tests, which we'll see in the next section, and \"jackknife\" resampling. You can read more at <http://en.wikipedia.org/wiki/Resampling_(statistics)>."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}