mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
233b197660
Source: https://github.com/jakevdp/PythonDataScienceHandbook unmodified
1602 lines
40 KiB
Python
1602 lines
40 KiB
Python
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<!--BOOK_INFORMATION-->\n",
|
||
"<img align=\"left\" style=\"padding-right:10px;\" src=\"figures/PDSH-cover-small.png\">\n",
|
||
"*This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n",
|
||
"\n",
|
||
"*The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!*\n",
|
||
"\n",
|
||
"*No changes were made to the contents of this notebook from the original.*"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<!--NAVIGATION-->\n",
|
||
"< [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb) | [Contents](Index.ipynb) | [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb) >"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Data Indexing and Selection"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"In [Chapter 2](02.00-Introduction-to-NumPy.ipynb), we looked in detail at methods and tools to access, set, and modify values in NumPy arrays.\n",
|
||
"These included indexing (e.g., ``arr[2, 1]``), slicing (e.g., ``arr[:, 1:5]``), masking (e.g., ``arr[arr > 0]``), fancy indexing (e.g., ``arr[0, [1, 5]]``), and combinations thereof (e.g., ``arr[:, [1, 5]]``).\n",
|
||
"Here we'll look at similar means of accessing and modifying values in Pandas ``Series`` and ``DataFrame`` objects.\n",
|
||
"If you have used the NumPy patterns, the corresponding patterns in Pandas will feel very familiar, though there are a few quirks to be aware of.\n",
|
||
"\n",
|
||
"We'll start with the simple case of the one-dimensional ``Series`` object, and then move on to the more complicated two-dimesnional ``DataFrame`` object."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Data Selection in Series\n",
|
||
"\n",
|
||
"As we saw in the previous section, a ``Series`` object acts in many ways like a one-dimensional NumPy array, and in many ways like a standard Python dictionary.\n",
|
||
"If we keep these two overlapping analogies in mind, it will help us to understand the patterns of data indexing and selection in these arrays."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Series as dictionary\n",
|
||
"\n",
|
||
"Like a dictionary, the ``Series`` object provides a mapping from a collection of keys to a collection of values:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"a 0.25\n",
|
||
"b 0.50\n",
|
||
"c 0.75\n",
|
||
"d 1.00\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"data = pd.Series([0.25, 0.5, 0.75, 1.0],\n",
|
||
" index=['a', 'b', 'c', 'd'])\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0.5"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['b']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can also use dictionary-like Python expressions and methods to examine the keys/indices and values:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"'a' in data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['a', 'b', 'c', 'd'], dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.keys()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"[('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"list(data.items())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"``Series`` objects can even be modified with a dictionary-like syntax.\n",
|
||
"Just as you can extend a dictionary by assigning to a new key, you can extend a ``Series`` by assigning to a new index value:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"a 0.25\n",
|
||
"b 0.50\n",
|
||
"c 0.75\n",
|
||
"d 1.00\n",
|
||
"e 1.25\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['e'] = 1.25\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This easy mutability of the objects is a convenient feature: under the hood, Pandas is making decisions about memory layout and data copying that might need to take place; the user generally does not need to worry about these issues."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Series as one-dimensional array"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"A ``Series`` builds on this dictionary-like interface and provides array-style item selection via the same basic mechanisms as NumPy arrays – that is, *slices*, *masking*, and *fancy indexing*.\n",
|
||
"Examples of these are as follows:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"a 0.25\n",
|
||
"b 0.50\n",
|
||
"c 0.75\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# slicing by explicit index\n",
|
||
"data['a':'c']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"a 0.25\n",
|
||
"b 0.50\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# slicing by implicit integer index\n",
|
||
"data[0:2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"b 0.50\n",
|
||
"c 0.75\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# masking\n",
|
||
"data[(data > 0.3) & (data < 0.8)]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"a 0.25\n",
|
||
"e 1.25\n",
|
||
"dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# fancy indexing\n",
|
||
"data[['a', 'e']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Among these, slicing may be the source of the most confusion.\n",
|
||
"Notice that when slicing with an explicit index (i.e., ``data['a':'c']``), the final index is *included* in the slice, while when slicing with an implicit index (i.e., ``data[0:2]``), the final index is *excluded* from the slice."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Indexers: loc, iloc, and ix\n",
|
||
"\n",
|
||
"These slicing and indexing conventions can be a source of confusion.\n",
|
||
"For example, if your ``Series`` has an explicit integer index, an indexing operation such as ``data[1]`` will use the explicit indices, while a slicing operation like ``data[1:3]`` will use the implicit Python-style index."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"1 a\n",
|
||
"3 b\n",
|
||
"5 c\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'a'"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# explicit index when indexing\n",
|
||
"data[1]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"3 b\n",
|
||
"5 c\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# implicit index when slicing\n",
|
||
"data[1:3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Because of this potential confusion in the case of integer indexes, Pandas provides some special *indexer* attributes that explicitly expose certain indexing schemes.\n",
|
||
"These are not functional methods, but attributes that expose a particular slicing interface to the data in the ``Series``.\n",
|
||
"\n",
|
||
"First, the ``loc`` attribute allows indexing and slicing that always references the explicit index:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'a'"
|
||
]
|
||
},
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.loc[1]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"1 a\n",
|
||
"3 b\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.loc[1:3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The ``iloc`` attribute allows indexing and slicing that always references the implicit Python-style index:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'b'"
|
||
]
|
||
},
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.iloc[1]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"3 b\n",
|
||
"5 c\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.iloc[1:3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"A third indexing attribute, ``ix``, is a hybrid of the two, and for ``Series`` objects is equivalent to standard ``[]``-based indexing.\n",
|
||
"The purpose of the ``ix`` indexer will become more apparent in the context of ``DataFrame`` objects, which we will discuss in a moment.\n",
|
||
"\n",
|
||
"One guiding principle of Python code is that \"explicit is better than implicit.\"\n",
|
||
"The explicit nature of ``loc`` and ``iloc`` make them very useful in maintaining clean and readable code; especially in the case of integer indexes, I recommend using these both to make code easier to read and understand, and to prevent subtle bugs due to the mixed indexing/slicing convention."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Data Selection in DataFrame\n",
|
||
"\n",
|
||
"Recall that a ``DataFrame`` acts in many ways like a two-dimensional or structured array, and in other ways like a dictionary of ``Series`` structures sharing the same index.\n",
|
||
"These analogies can be helpful to keep in mind as we explore data selection within this structure."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### DataFrame as a dictionary\n",
|
||
"\n",
|
||
"The first analogy we will consider is the ``DataFrame`` as a dictionary of related ``Series`` objects.\n",
|
||
"Let's return to our example of areas and populations of states:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>New York</th>\n",
|
||
" <td>141297</td>\n",
|
||
" <td>19651127</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Texas</th>\n",
|
||
" <td>695662</td>\n",
|
||
" <td>26448193</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop\n",
|
||
"California 423967 38332521\n",
|
||
"Florida 170312 19552860\n",
|
||
"Illinois 149995 12882135\n",
|
||
"New York 141297 19651127\n",
|
||
"Texas 695662 26448193"
|
||
]
|
||
},
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"area = pd.Series({'California': 423967, 'Texas': 695662,\n",
|
||
" 'New York': 141297, 'Florida': 170312,\n",
|
||
" 'Illinois': 149995})\n",
|
||
"pop = pd.Series({'California': 38332521, 'Texas': 26448193,\n",
|
||
" 'New York': 19651127, 'Florida': 19552860,\n",
|
||
" 'Illinois': 12882135})\n",
|
||
"data = pd.DataFrame({'area':area, 'pop':pop})\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The individual ``Series`` that make up the columns of the ``DataFrame`` can be accessed via dictionary-style indexing of the column name:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"California 423967\n",
|
||
"Florida 170312\n",
|
||
"Illinois 149995\n",
|
||
"New York 141297\n",
|
||
"Texas 695662\n",
|
||
"Name: area, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['area']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Equivalently, we can use attribute-style access with column names that are strings:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"California 423967\n",
|
||
"Florida 170312\n",
|
||
"Illinois 149995\n",
|
||
"New York 141297\n",
|
||
"Texas 695662\n",
|
||
"Name: area, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.area"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This attribute-style column access actually accesses the exact same object as the dictionary-style access:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"True"
|
||
]
|
||
},
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.area is data['area']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Though this is a useful shorthand, keep in mind that it does not work for all cases!\n",
|
||
"For example, if the column names are not strings, or if the column names conflict with methods of the ``DataFrame``, this attribute-style access is not possible.\n",
|
||
"For example, the ``DataFrame`` has a ``pop()`` method, so ``data.pop`` will point to this rather than the ``\"pop\"`` column:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"False"
|
||
]
|
||
},
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.pop is data['pop']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"In particular, you should avoid the temptation to try column assignment via attribute (i.e., use ``data['pop'] = z`` rather than ``data.pop = z``).\n",
|
||
"\n",
|
||
"Like with the ``Series`` objects discussed earlier, this dictionary-style syntax can also be used to modify the object, in this case adding a new column:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" <td>90.413926</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" <td>85.883763</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>New York</th>\n",
|
||
" <td>141297</td>\n",
|
||
" <td>19651127</td>\n",
|
||
" <td>139.076746</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Texas</th>\n",
|
||
" <td>695662</td>\n",
|
||
" <td>26448193</td>\n",
|
||
" <td>38.018740</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop density\n",
|
||
"California 423967 38332521 90.413926\n",
|
||
"Florida 170312 19552860 114.806121\n",
|
||
"Illinois 149995 12882135 85.883763\n",
|
||
"New York 141297 19651127 139.076746\n",
|
||
"Texas 695662 26448193 38.018740"
|
||
]
|
||
},
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['density'] = data['pop'] / data['area']\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This shows a preview of the straightforward syntax of element-by-element arithmetic between ``Series`` objects; we'll dig into this further in [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### DataFrame as two-dimensional array\n",
|
||
"\n",
|
||
"As mentioned previously, we can also view the ``DataFrame`` as an enhanced two-dimensional array.\n",
|
||
"We can examine the raw underlying data array using the ``values`` attribute:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01],\n",
|
||
" [ 1.70312000e+05, 1.95528600e+07, 1.14806121e+02],\n",
|
||
" [ 1.49995000e+05, 1.28821350e+07, 8.58837628e+01],\n",
|
||
" [ 1.41297000e+05, 1.96511270e+07, 1.39076746e+02],\n",
|
||
" [ 6.95662000e+05, 2.64481930e+07, 3.80187404e+01]])"
|
||
]
|
||
},
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.values"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"With this picture in mind, many familiar array-like observations can be done on the ``DataFrame`` itself.\n",
|
||
"For example, we can transpose the full ``DataFrame`` to swap rows and columns:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>California</th>\n",
|
||
" <th>Florida</th>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <th>New York</th>\n",
|
||
" <th>Texas</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>area</th>\n",
|
||
" <td>4.239670e+05</td>\n",
|
||
" <td>1.703120e+05</td>\n",
|
||
" <td>1.499950e+05</td>\n",
|
||
" <td>1.412970e+05</td>\n",
|
||
" <td>6.956620e+05</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>pop</th>\n",
|
||
" <td>3.833252e+07</td>\n",
|
||
" <td>1.955286e+07</td>\n",
|
||
" <td>1.288214e+07</td>\n",
|
||
" <td>1.965113e+07</td>\n",
|
||
" <td>2.644819e+07</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>density</th>\n",
|
||
" <td>9.041393e+01</td>\n",
|
||
" <td>1.148061e+02</td>\n",
|
||
" <td>8.588376e+01</td>\n",
|
||
" <td>1.390767e+02</td>\n",
|
||
" <td>3.801874e+01</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" California Florida Illinois New York Texas\n",
|
||
"area 4.239670e+05 1.703120e+05 1.499950e+05 1.412970e+05 6.956620e+05\n",
|
||
"pop 3.833252e+07 1.955286e+07 1.288214e+07 1.965113e+07 2.644819e+07\n",
|
||
"density 9.041393e+01 1.148061e+02 8.588376e+01 1.390767e+02 3.801874e+01"
|
||
]
|
||
},
|
||
"execution_count": 25,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.T"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"When it comes to indexing of ``DataFrame`` objects, however, it is clear that the dictionary-style indexing of columns precludes our ability to simply treat it as a NumPy array.\n",
|
||
"In particular, passing a single index to an array accesses a row:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01])"
|
||
]
|
||
},
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.values[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"and passing a single \"index\" to a ``DataFrame`` accesses a column:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"California 423967\n",
|
||
"Florida 170312\n",
|
||
"Illinois 149995\n",
|
||
"New York 141297\n",
|
||
"Texas 695662\n",
|
||
"Name: area, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 27,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['area']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"source": [
|
||
"Thus for array-style indexing, we need another convention.\n",
|
||
"Here Pandas again uses the ``loc``, ``iloc``, and ``ix`` indexers mentioned earlier.\n",
|
||
"Using the ``iloc`` indexer, we can index the underlying array as if it is a simple NumPy array (using the implicit Python-style index), but the ``DataFrame`` index and column labels are maintained in the result:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop\n",
|
||
"California 423967 38332521\n",
|
||
"Florida 170312 19552860\n",
|
||
"Illinois 149995 12882135"
|
||
]
|
||
},
|
||
"execution_count": 28,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.iloc[:3, :2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Similarly, using the ``loc`` indexer we can index the underlying data in an array-like style but using the explicit index and column names:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 29,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop\n",
|
||
"California 423967 38332521\n",
|
||
"Florida 170312 19552860\n",
|
||
"Illinois 149995 12882135"
|
||
]
|
||
},
|
||
"execution_count": 29,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.loc[:'Illinois', :'pop']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"source": [
|
||
"The ``ix`` indexer allows a hybrid of these two approaches:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop\n",
|
||
"California 423967 38332521\n",
|
||
"Florida 170312 19552860\n",
|
||
"Illinois 149995 12882135"
|
||
]
|
||
},
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.ix[:3, :'pop']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Keep in mind that for integer indices, the ``ix`` indexer is subject to the same potential sources of confusion as discussed for integer-indexed ``Series`` objects.\n",
|
||
"\n",
|
||
"Any of the familiar NumPy-style data access patterns can be used within these indexers.\n",
|
||
"For example, in the ``loc`` indexer we can combine masking and fancy indexing as in the following:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>New York</th>\n",
|
||
" <td>19651127</td>\n",
|
||
" <td>139.076746</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" pop density\n",
|
||
"Florida 19552860 114.806121\n",
|
||
"New York 19651127 139.076746"
|
||
]
|
||
},
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.loc[data.density > 100, ['pop', 'density']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Any of these indexing conventions may also be used to set or modify values; this is done in the standard way that you might be accustomed to from working with NumPy:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>California</th>\n",
|
||
" <td>423967</td>\n",
|
||
" <td>38332521</td>\n",
|
||
" <td>90.000000</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" <td>85.883763</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>New York</th>\n",
|
||
" <td>141297</td>\n",
|
||
" <td>19651127</td>\n",
|
||
" <td>139.076746</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Texas</th>\n",
|
||
" <td>695662</td>\n",
|
||
" <td>26448193</td>\n",
|
||
" <td>38.018740</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop density\n",
|
||
"California 423967 38332521 90.000000\n",
|
||
"Florida 170312 19552860 114.806121\n",
|
||
"Illinois 149995 12882135 85.883763\n",
|
||
"New York 141297 19651127 139.076746\n",
|
||
"Texas 695662 26448193 38.018740"
|
||
]
|
||
},
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data.iloc[0, 2] = 90\n",
|
||
"data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"To build up your fluency in Pandas data manipulation, I suggest spending some time with a simple ``DataFrame`` and exploring the types of indexing, slicing, masking, and fancy indexing that are allowed by these various indexing approaches."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Additional indexing conventions\n",
|
||
"\n",
|
||
"There are a couple extra indexing conventions that might seem at odds with the preceding discussion, but nevertheless can be very useful in practice.\n",
|
||
"First, while *indexing* refers to columns, *slicing* refers to rows:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" <td>85.883763</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop density\n",
|
||
"Florida 170312 19552860 114.806121\n",
|
||
"Illinois 149995 12882135 85.883763"
|
||
]
|
||
},
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data['Florida':'Illinois']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Such slices can also refer to rows by number rather than by index:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>Illinois</th>\n",
|
||
" <td>149995</td>\n",
|
||
" <td>12882135</td>\n",
|
||
" <td>85.883763</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop density\n",
|
||
"Florida 170312 19552860 114.806121\n",
|
||
"Illinois 149995 12882135 85.883763"
|
||
]
|
||
},
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data[1:3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Similarly, direct masking operations are also interpreted row-wise rather than column-wise:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"metadata": {
|
||
"collapsed": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>area</th>\n",
|
||
" <th>pop</th>\n",
|
||
" <th>density</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>Florida</th>\n",
|
||
" <td>170312</td>\n",
|
||
" <td>19552860</td>\n",
|
||
" <td>114.806121</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>New York</th>\n",
|
||
" <td>141297</td>\n",
|
||
" <td>19651127</td>\n",
|
||
" <td>139.076746</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" area pop density\n",
|
||
"Florida 170312 19552860 114.806121\n",
|
||
"New York 141297 19651127 139.076746"
|
||
]
|
||
},
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"data[data.density > 100]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"These two conventions are syntactically similar to those on a NumPy array, and while these may not precisely fit the mold of the Pandas conventions, they are nevertheless quite useful in practice."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<!--NAVIGATION-->\n",
|
||
"< [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb) | [Contents](Index.ipynb) | [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb) >"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"anaconda-cloud": {},
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.4.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0
|
||
}
|