{ "metadata": { "name": "", "signature": "sha256:364642bdaf4f304a679c7bbde135fea5a7e31eb8da19fb9b24192091e3e34cb0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Pandas\n", "\n", "* Series\n", "* DataFrame\n", "* Reindexing\n", "* Dropping Entries\n", "* Indexing, Selecting, Filtering\n", "* Arithmetic and Data Alignment\n", "* Function Application and Mapping\n", "* Sorting and Ranking\n", "* Axis Indices with Duplicate Values\n", "* Summarizing and Computing Descriptive Statistics" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from pandas import Series, DataFrame\n", "import pandas as pd\n", "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Series\n", "\n", "A Series is a one-dimensional array-like object containing an array of data and an associated array of data labels. The data can be any NumPy data type and the labels are the Series' index." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1 = Series([1, 1, 2, -3, -5, 8, 13])\n", "ser_1" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "0 1\n", "1 1\n", "2 2\n", "3 -3\n", "4 -5\n", "5 8\n", "6 13\n", "dtype: int64" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the array representation of a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1.values" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "array([ 1, 1, 2, -3, -5, 8, 13])" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Index objects are immutable and hold the axis labels and metadata such as names and axis names.\n", "\n", "Get the index of the Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1.index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "Int64Index([0, 1, 2, 3, 4, 5, 6], dtype='int64')" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a Series with a custom index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2 = Series([1, 1, 2, -3, -5], index=['a', 'b', 'c', 'd', 'e'])\n", "ser_2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "a 1\n", "b 1\n", "c 2\n", "d -3\n", "e -5\n", "dtype: int64" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get a value from a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[4] == ser_2['e']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "True" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get a set of values from a Series by passing in a list:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[['c', 'a', 'b']]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "c 2\n", "a 1\n", "b 1\n", "dtype: int64" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get values great than 0:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[ser_2 > 0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ "a 1\n", "b 1\n", "c 2\n", "dtype: int64" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Scalar multiply:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2 * 2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 9, "text": [ "a 2\n", "b 2\n", "c 4\n", "d -6\n", "e -10\n", "dtype: int64" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply a numpy math function:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "np.exp(ser_2)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ "a 2.718282\n", "b 2.718282\n", "c 7.389056\n", "d 0.049787\n", "e 0.006738\n", "dtype: float64" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "A Series is like a fixed-length, ordered dict. \n", "\n", "Create a series by passing in a dict:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "dict_1 = {'foo' : 100, 'bar' : 200, 'baz' : 300}\n", "ser_3 = Series(dict_1)\n", "ser_3" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 11, "text": [ "bar 200\n", "baz 300\n", "foo 100\n", "dtype: int64" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Re-order a Series by passing in an index (indices not found are NaN):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "index = ['foo', 'bar', 'baz', 'qux']\n", "ser_4 = Series(dict_1, index=index)\n", "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ "foo 100\n", "bar 200\n", "baz 300\n", "qux NaN\n", "dtype: float64" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check for NaN with the pandas method:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "pd.isnull(ser_4)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 13, "text": [ "foo False\n", "bar False\n", "baz False\n", "qux True\n", "dtype: bool" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check for NaN with the Series method:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.isnull()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ "foo False\n", "bar False\n", "baz False\n", "qux True\n", "dtype: bool" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Series automatically aligns differently indexed data in arithmetic operations:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_3 + ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ "bar 400\n", "baz 600\n", "foo 200\n", "qux NaN\n", "dtype: float64" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.name = 'foobarbazqux'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name a Series index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.index.name = 'label'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 18, "text": [ "label\n", "foo 100\n", "bar 200\n", "baz 300\n", "qux NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 18 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rename a Series' index in place:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.index = ['fo', 'br', 'bz', 'qx']\n", "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 19, "text": [ "fo 100\n", "br 200\n", "bz 300\n", "qx NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 19 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DataFrame\n", "\n", "A DataFrame is a tabular data structure containing an ordered collection of columns. Each column can have a different type. DataFrames have both row and column indices and is analogous to a dict of Series. Row and column operations are treated roughly symmetrically. Columns returned when indexing a DataFrame are views of the underlying data, not a copy. To obtain a copy, use the Series' copy method.\n", "\n", "Create a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "data_1 = {'state' : ['VA', 'VA', 'VA', 'MD', 'MD'],\n", " 'year' : [2012, 2013, 2014, 2014, 2015],\n", " 'pop' : [5.0, 5.1, 5.2, 4.0, 4.1]}\n", "df_1 = DataFrame(data_1)\n", "df_1" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
popstateyear
0 5.0 VA 2012
1 5.1 VA 2013
2 5.2 VA 2014
3 4.0 MD 2014
4 4.1 MD 2015
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 20, "text": [ " pop state year\n", "0 5.0 VA 2012\n", "1 5.1 VA 2013\n", "2 5.2 VA 2014\n", "3 4.0 MD 2014\n", "4 4.1 MD 2015" ] } ], "prompt_number": 20 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a DataFrame specifying a sequence of columns:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_2 = DataFrame(data_1, columns=['year', 'state', 'pop'])\n", "df_2" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepop
0 2012 VA 5.0
1 2013 VA 5.1
2 2014 VA 5.2
3 2014 MD 4.0
4 2015 MD 4.1
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 21, "text": [ " year state pop\n", "0 2012 VA 5.0\n", "1 2013 VA 5.1\n", "2 2014 VA 5.2\n", "3 2014 MD 4.0\n", "4 2015 MD 4.1" ] } ], "prompt_number": 21 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like Series, columns that are not present in the data are NaN:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3 = DataFrame(data_1, columns=['year', 'state', 'pop', 'unempl'])\n", "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
0 2012 VA 5.0 NaN
1 2013 VA 5.1 NaN
2 2014 VA 5.2 NaN
3 2014 MD 4.0 NaN
4 2015 MD 4.1 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 22, "text": [ " year state pop unempl\n", "0 2012 VA 5.0 NaN\n", "1 2013 VA 5.1 NaN\n", "2 2014 VA 5.2 NaN\n", "3 2014 MD 4.0 NaN\n", "4 2015 MD 4.1 NaN" ] } ], "prompt_number": 22 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Retrieve a column by key, returning a Series:\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3['state']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 23, "text": [ "0 VA\n", "1 VA\n", "2 VA\n", "3 MD\n", "4 MD\n", "Name: state, dtype: object" ] } ], "prompt_number": 23 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Retrive a column by attribute, returning a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.year" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 24, "text": [ "0 2012\n", "1 2013\n", "2 2014\n", "3 2014\n", "4 2015\n", "Name: year, dtype: int64" ] } ], "prompt_number": 24 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Retrieve a row by position:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.ix[0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 25, "text": [ "year 2012\n", "state VA\n", "pop 5\n", "unempl NaN\n", "Name: 0, dtype: object" ] } ], "prompt_number": 25 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Update a column by assignment:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3['unempl'] = np.arange(5)\n", "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
0 2012 VA 5.0 0
1 2013 VA 5.1 1
2 2014 VA 5.2 2
3 2014 MD 4.0 3
4 2015 MD 4.1 4
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 26, "text": [ " year state pop unempl\n", "0 2012 VA 5.0 0\n", "1 2013 VA 5.1 1\n", "2 2014 VA 5.2 2\n", "3 2014 MD 4.0 3\n", "4 2015 MD 4.1 4" ] } ], "prompt_number": 26 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assign a Series to a column (note if assigning a list or array, the length must match the DataFrame, unlike a Series):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "unempl = Series([6.0, 6.0, 6.1], index=[2, 3, 4])\n", "df_3['unempl'] = unempl\n", "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
0 2012 VA 5.0 NaN
1 2013 VA 5.1 NaN
2 2014 VA 5.2 6.0
3 2014 MD 4.0 6.0
4 2015 MD 4.1 6.1
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 27, "text": [ " year state pop unempl\n", "0 2012 VA 5.0 NaN\n", "1 2013 VA 5.1 NaN\n", "2 2014 VA 5.2 6.0\n", "3 2014 MD 4.0 6.0\n", "4 2015 MD 4.1 6.1" ] } ], "prompt_number": 27 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assign a new column that doesn't exist to create a new column:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3['state_dup'] = df_3['state']\n", "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunemplstate_dup
0 2012 VA 5.0 NaN VA
1 2013 VA 5.1 NaN VA
2 2014 VA 5.2 6.0 VA
3 2014 MD 4.0 6.0 MD
4 2015 MD 4.1 6.1 MD
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 28, "text": [ " year state pop unempl state_dup\n", "0 2012 VA 5.0 NaN VA\n", "1 2013 VA 5.1 NaN VA\n", "2 2014 VA 5.2 6.0 VA\n", "3 2014 MD 4.0 6.0 MD\n", "4 2015 MD 4.1 6.1 MD" ] } ], "prompt_number": 28 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Delete a column:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "del df_3['state_dup']\n", "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
0 2012 VA 5.0 NaN
1 2013 VA 5.1 NaN
2 2014 VA 5.2 6.0
3 2014 MD 4.0 6.0
4 2015 MD 4.1 6.1
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 29, "text": [ " year state pop unempl\n", "0 2012 VA 5.0 NaN\n", "1 2013 VA 5.1 NaN\n", "2 2014 VA 5.2 6.0\n", "3 2014 MD 4.0 6.0\n", "4 2015 MD 4.1 6.1" ] } ], "prompt_number": 29 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a DataFrame from a nested dict of dicts (the keys in the inner dicts are unioned and sorted to form the index in the result, unless an explicit index is specified):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "pop = {'VA' : {2013 : 5.1, 2014 : 5.2},\n", " 'MD' : {2014 : 4.0, 2015 : 4.1}}\n", "df_4 = DataFrame(pop)\n", "df_4" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MDVA
2013 NaN 5.1
2014 4.0 5.2
2015 4.1 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 30, "text": [ " MD VA\n", "2013 NaN 5.1\n", "2014 4.0 5.2\n", "2015 4.1 NaN" ] } ], "prompt_number": 30 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Transpose the DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_4.T" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
201320142015
MD NaN 4.0 4.1
VA 5.1 5.2 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 31, "text": [ " 2013 2014 2015\n", "MD NaN 4.0 4.1\n", "VA 5.1 5.2 NaN" ] } ], "prompt_number": 31 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a DataFrame from a dict of Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "data_2 = {'VA' : df_4['VA'][1:],\n", " 'MD' : df_4['MD'][2:]}\n", "df_5 = DataFrame(data_2)\n", "df_5" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MDVA
2014 NaN 5.2
2015 4.1 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 32, "text": [ " MD VA\n", "2014 NaN 5.2\n", "2015 4.1 NaN" ] } ], "prompt_number": 32 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set the DataFrame index name:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_5.index.name = 'year'\n", "df_5" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MDVA
year
2014 NaN 5.2
2015 4.1 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 33, "text": [ " MD VA\n", "year \n", "2014 NaN 5.2\n", "2015 4.1 NaN" ] } ], "prompt_number": 33 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set the DataFrame columns name:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_5.columns.name = 'state'\n", "df_5" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
stateMDVA
year
2014 NaN 5.2
2015 4.1 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 34, "text": [ "state MD VA\n", "year \n", "2014 NaN 5.2\n", "2015 4.1 NaN" ] } ], "prompt_number": 34 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Return the data contained in a DataFrame as a 2D ndarray:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_5.values" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 35, "text": [ "array([[ nan, 5.2],\n", " [ 4.1, nan]])" ] } ], "prompt_number": 35 }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the columns are different dtypes, the 2D ndarray's dtype will accomodate all of the columns:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.values" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 36, "text": [ "array([[2012, 'VA', 5.0, nan],\n", " [2013, 'VA', 5.1, nan],\n", " [2014, 'VA', 5.2, 6.0],\n", " [2014, 'MD', 4.0, 6.0],\n", " [2015, 'MD', 4.1, 6.1]], dtype=object)" ] } ], "prompt_number": 36 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reindexing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a new object with the data conformed to a new index. Any missing values are set to NaN." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
0 2012 VA 5.0 NaN
1 2013 VA 5.1 NaN
2 2014 VA 5.2 6.0
3 2014 MD 4.0 6.0
4 2015 MD 4.1 6.1
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 37, "text": [ " year state pop unempl\n", "0 2012 VA 5.0 NaN\n", "1 2013 VA 5.1 NaN\n", "2 2014 VA 5.2 6.0\n", "3 2014 MD 4.0 6.0\n", "4 2015 MD 4.1 6.1" ] } ], "prompt_number": 37 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reindexing rows returns a new frame with the specified index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.reindex(list(reversed(range(0, 6))))" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
5 NaN NaN NaN NaN
4 2015 MD 4.1 6.1
3 2014 MD 4.0 6.0
2 2014 VA 5.2 6.0
1 2013 VA 5.1 NaN
0 2012 VA 5.0 NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 38, "text": [ " year state pop unempl\n", "5 NaN NaN NaN NaN\n", "4 2015 MD 4.1 6.1\n", "3 2014 MD 4.0 6.0\n", "2 2014 VA 5.2 6.0\n", "1 2013 VA 5.1 NaN\n", "0 2012 VA 5.0 NaN" ] } ], "prompt_number": 38 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Missing values can be set to something other than NaN:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.reindex(range(6, 0), fill_value=0)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yearstatepopunempl
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 39, "text": [ "Empty DataFrame\n", "Columns: [year, state, pop, unempl]\n", "Index: []" ] } ], "prompt_number": 39 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Interpolate ordered data like a time series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_5 = Series(['foo', 'bar', 'baz'], index=[0, 2, 4])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_5.reindex(range(5), method='ffill')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 41, "text": [ "0 foo\n", "1 foo\n", "2 bar\n", "3 bar\n", "4 baz\n", "dtype: object" ] } ], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_5.reindex(range(5), method='bfill')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 42, "text": [ "0 foo\n", "1 bar\n", "2 bar\n", "3 baz\n", "4 baz\n", "dtype: object" ] } ], "prompt_number": 42 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reindex columns:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.reindex(columns=['state', 'pop', 'unempl', 'year'])" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0 NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 43, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015" ] } ], "prompt_number": 43 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reindex rows and columns while filling rows:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_3.reindex(index=list(reversed(range(0, 6))),\n", " fill_value=0,\n", " columns=['state', 'pop', 'unempl', 'year'])" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
5 0 0.0 0.0 0
4 MD 4.1 6.1 2015
3 MD 4.0 6.0 2014
2 VA 5.2 6.0 2014
1 VA 5.1 NaN 2013
0 VA 5.0 NaN 2012
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 44, "text": [ " state pop unempl year\n", "5 0 0.0 0.0 0\n", "4 MD 4.1 6.1 2015\n", "3 MD 4.0 6.0 2014\n", "2 VA 5.2 6.0 2014\n", "1 VA 5.1 NaN 2013\n", "0 VA 5.0 NaN 2012" ] } ], "prompt_number": 44 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reindex using ix:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6 = df_3.ix[range(0, 7), ['state', 'pop', 'unempl', 'year']]\n", "df_6" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0 NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 45, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 45 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dropping Entries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drop rows from a Series or DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_7 = df_6.drop([0, 1])\n", "df_7" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 46, "text": [ " state pop unempl year\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 46 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drop columns from a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_7 = df_7.drop('unempl', axis=1)\n", "df_7" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopyear
2 VA 5.2 2014
3 MD 4.0 2014
4 MD 4.1 2015
5 NaN NaN NaN
6 NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 47, "text": [ " state pop year\n", "2 VA 5.2 2014\n", "3 MD 4.0 2014\n", "4 MD 4.1 2015\n", "5 NaN NaN NaN\n", "6 NaN NaN NaN" ] } ], "prompt_number": 47 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Indexing, Selecting, Filtering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Series indexing is similar to NumPy array indexing with the added bonus of being able to use the Series' index values." ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 48, "text": [ "a 1\n", "b 1\n", "c 2\n", "d -3\n", "e -5\n", "dtype: int64" ] } ], "prompt_number": 48 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a value from a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[0] == ser_2['a']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 49, "text": [ "True" ] } ], "prompt_number": 49 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a slice from a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[1:4]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 50, "text": [ "b 1\n", "c 2\n", "d -3\n", "dtype: int64" ] } ], "prompt_number": 50 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select specific values from a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[['b', 'c', 'd']]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 51, "text": [ "b 1\n", "c 2\n", "d -3\n", "dtype: int64" ] } ], "prompt_number": 51 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select from a Series based on a filter:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[ser_2 > 0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 52, "text": [ "a 1\n", "b 1\n", "c 2\n", "dtype: int64" ] } ], "prompt_number": 52 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a slice from a Series with labels (note the end point is inclusive):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2['a':'b']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 53, "text": [ "a 1\n", "b 1\n", "dtype: int64" ] } ], "prompt_number": 53 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Assign to a Series slice (note the end point is inclusive):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2['a':'b'] = 0\n", "ser_2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 54, "text": [ "a 0\n", "b 0\n", "c 2\n", "d -3\n", "e -5\n", "dtype: int64" ] } ], "prompt_number": 54 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pandas supports indexing into a DataFrame." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0 NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 55, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 55 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select specified columns from a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6[['pop', 'unempl']]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
popunempl
0 5.0 NaN
1 5.1 NaN
2 5.2 6.0
3 4.0 6.0
4 4.1 6.1
5 NaN NaN
6 NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 56, "text": [ " pop unempl\n", "0 5.0 NaN\n", "1 5.1 NaN\n", "2 5.2 6.0\n", "3 4.0 6.0\n", "4 4.1 6.1\n", "5 NaN NaN\n", "6 NaN NaN" ] } ], "prompt_number": 56 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a slice from a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6[:2]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0NaN 2012
1 VA 5.1NaN 2013
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 57, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013" ] } ], "prompt_number": 57 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select from a DataFrame based on a filter:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6[df_6['pop'] > 5]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
1 VA 5.1NaN 2013
2 VA 5.2 6 2014
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 58, "text": [ " state pop unempl year\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6 2014" ] } ], "prompt_number": 58 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perform a scalar comparison on a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6 > 5" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 True False False True
1 True True False True
2 True True True True
3 True False True True
4 True False True True
5 False False False False
6 False False False False
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 59, "text": [ " state pop unempl year\n", "0 True False False True\n", "1 True True False True\n", "2 True True True True\n", "3 True False True True\n", "4 True False True True\n", "5 False False False False\n", "6 False False False False" ] } ], "prompt_number": 59 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perform a scalar comparison on a DataFrame, retain the values that pass the filter:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6[df_6 > 5]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA NaN NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD NaN 6.0 2014
4 MD NaN 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 60, "text": [ " state pop unempl year\n", "0 VA NaN NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD NaN 6.0 2014\n", "4 MD NaN 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 60 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a slice of rows from a DataFrame (note the end point is inclusive):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.ix[2:3]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
2 VA 5.2 6 2014
3 MD 4.0 6 2014
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 61, "text": [ " state pop unempl year\n", "2 VA 5.2 6 2014\n", "3 MD 4.0 6 2014" ] } ], "prompt_number": 61 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a slice of rows from a specific column of a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.ix[0:2, 'pop']\n", "df_6" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0 NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 62, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 62 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select rows based on an arithmetic operation on a specific row:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.ix[df_6.unempl > 5.0]" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 63, "text": [ " state pop unempl year\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015" ] } ], "prompt_number": 63 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Arithmetic and Data Alignment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adding Series objects results in the union of index pairs if the pairs are not the same, resulting in NaN for indices that do not overlap:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "np.random.seed(0)\n", "ser_6 = Series(np.random.randn(5),\n", " index=['a', 'b', 'c', 'd', 'e'])\n", "ser_6" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 64, "text": [ "a 1.764052\n", "b 0.400157\n", "c 0.978738\n", "d 2.240893\n", "e 1.867558\n", "dtype: float64" ] } ], "prompt_number": 64 }, { "cell_type": "code", "collapsed": false, "input": [ "np.random.seed(1)\n", "ser_7 = Series(np.random.randn(5),\n", " index=['a', 'c', 'e', 'f', 'g'])\n", "ser_7" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 65, "text": [ "a 1.624345\n", "c -0.611756\n", "e -0.528172\n", "f -1.072969\n", "g 0.865408\n", "dtype: float64" ] } ], "prompt_number": 65 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_6 + ser_7" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 66, "text": [ "a 3.388398\n", "b NaN\n", "c 0.366982\n", "d NaN\n", "e 1.339386\n", "f NaN\n", "g NaN\n", "dtype: float64" ] } ], "prompt_number": 66 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set a fill value instead of NaN for indices that do not overlap:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_6.add(ser_7, fill_value=0)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 67, "text": [ "a 3.388398\n", "b 0.400157\n", "c 0.366982\n", "d 2.240893\n", "e 1.339386\n", "f -1.072969\n", "g 0.865408\n", "dtype: float64" ] } ], "prompt_number": 67 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adding DataFrame objects results in the union of index pairs for rows and columns if the pairs are not the same, resulting in NaN for indices that do not overlap:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "np.random.seed(0)\n", "df_8 = DataFrame(np.random.rand(9).reshape((3, 3)),\n", " columns=['a', 'b', 'c'])\n", "df_8" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abc
0 0.548814 0.715189 0.602763
1 0.544883 0.423655 0.645894
2 0.437587 0.891773 0.963663
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 68, "text": [ " a b c\n", "0 0.548814 0.715189 0.602763\n", "1 0.544883 0.423655 0.645894\n", "2 0.437587 0.891773 0.963663" ] } ], "prompt_number": 68 }, { "cell_type": "code", "collapsed": false, "input": [ "np.random.seed(1)\n", "df_9 = DataFrame(np.random.rand(9).reshape((3, 3)),\n", " columns=['b', 'c', 'd'])\n", "df_9" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
bcd
0 0.417022 0.720324 0.000114
1 0.302333 0.146756 0.092339
2 0.186260 0.345561 0.396767
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 69, "text": [ " b c d\n", "0 0.417022 0.720324 0.000114\n", "1 0.302333 0.146756 0.092339\n", "2 0.186260 0.345561 0.396767" ] } ], "prompt_number": 69 }, { "cell_type": "code", "collapsed": false, "input": [ "df_8 + df_9" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0NaN 1.132211 1.323088NaN
1NaN 0.725987 0.792650NaN
2NaN 1.078033 1.309223NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 70, "text": [ " a b c d\n", "0 NaN 1.132211 1.323088 NaN\n", "1 NaN 0.725987 0.792650 NaN\n", "2 NaN 1.078033 1.309223 NaN" ] } ], "prompt_number": 70 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set a fill value instead of NaN for indices that do not overlap:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_10 = df_8.add(df_9, fill_value=0)\n", "df_10" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 0.548814 1.132211 1.323088 0.000114
1 0.544883 0.725987 0.792650 0.092339
2 0.437587 1.078033 1.309223 0.396767
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 71, "text": [ " a b c d\n", "0 0.548814 1.132211 1.323088 0.000114\n", "1 0.544883 0.725987 0.792650 0.092339\n", "2 0.437587 1.078033 1.309223 0.396767" ] } ], "prompt_number": 71 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like NumPy, pandas supports arithmetic operations between DataFrames and Series.\n", "\n", "Match the index of the Series on the DataFrame's columns, broadcasting down the rows:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_8 = df_10.ix[0]\n", "df_11 = df_10 - ser_8\n", "df_11" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 0.000000 0.000000 0.000000 0.000000
1-0.003930-0.406224-0.530438 0.092224
2-0.111226-0.054178-0.013864 0.396653
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 72, "text": [ " a b c d\n", "0 0.000000 0.000000 0.000000 0.000000\n", "1 -0.003930 -0.406224 -0.530438 0.092224\n", "2 -0.111226 -0.054178 -0.013864 0.396653" ] } ], "prompt_number": 72 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Match the index of the Series on the DataFrame's columns, broadcasting down the rows and union the indices that do not match:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_9 = Series(range(3), index=['a', 'd', 'e'])\n", "ser_9" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 73, "text": [ "a 0\n", "d 1\n", "e 2\n", "dtype: int64" ] } ], "prompt_number": 73 }, { "cell_type": "code", "collapsed": false, "input": [ "df_11 - ser_9" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcde
0 0.000000NaNNaN-1.000000NaN
1-0.003930NaNNaN-0.907776NaN
2-0.111226NaNNaN-0.603347NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 74, "text": [ " a b c d e\n", "0 0.000000 NaN NaN -1.000000 NaN\n", "1 -0.003930 NaN NaN -0.907776 NaN\n", "2 -0.111226 NaN NaN -0.603347 NaN" ] } ], "prompt_number": 74 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Broadcast over the columns and match the rows (axis=0) by using an arithmetic method:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_10" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 0.548814 1.132211 1.323088 0.000114
1 0.544883 0.725987 0.792650 0.092339
2 0.437587 1.078033 1.309223 0.396767
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 75, "text": [ " a b c d\n", "0 0.548814 1.132211 1.323088 0.000114\n", "1 0.544883 0.725987 0.792650 0.092339\n", "2 0.437587 1.078033 1.309223 0.396767" ] } ], "prompt_number": 75 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_10 = Series([100, 200, 300])\n", "ser_10" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 76, "text": [ "0 100\n", "1 200\n", "2 300\n", "dtype: int64" ] } ], "prompt_number": 76 }, { "cell_type": "code", "collapsed": false, "input": [ "df_10.sub(ser_10, axis=0)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 -99.451186 -98.867789 -98.676912 -99.999886
1-199.455117-199.274013-199.207350-199.907661
2-299.562413-298.921967-298.690777-299.603233
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 77, "text": [ " a b c d\n", "0 -99.451186 -98.867789 -98.676912 -99.999886\n", "1 -199.455117 -199.274013 -199.207350 -199.907661\n", "2 -299.562413 -298.921967 -298.690777 -299.603233" ] } ], "prompt_number": 77 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Function Application and Mapping" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "NumPy ufuncs (element-wise array methods) operate on pandas objects:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_11 = np.abs(df_11)\n", "df_11" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 0.000000 0.000000 0.000000 0.000000
1 0.003930 0.406224 0.530438 0.092224
2 0.111226 0.054178 0.013864 0.396653
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 78, "text": [ " a b c d\n", "0 0.000000 0.000000 0.000000 0.000000\n", "1 0.003930 0.406224 0.530438 0.092224\n", "2 0.111226 0.054178 0.013864 0.396653" ] } ], "prompt_number": 78 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply a function on 1D arrays to each column:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "func_1 = lambda x: x.max() - x.min()\n", "df_11.apply(func_1)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 79, "text": [ "a 0.111226\n", "b 0.406224\n", "c 0.530438\n", "d 0.396653\n", "dtype: float64" ] } ], "prompt_number": 79 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply a function on 1D arrays to each row:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_11.apply(func_1, axis=1)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 80, "text": [ "0 0.000000\n", "1 0.526508\n", "2 0.382789\n", "dtype: float64" ] } ], "prompt_number": 80 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply a function and return a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "func_2 = lambda x: Series([x.min(), x.max()], index=['min', 'max'])\n", "df_11.apply(func_2)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
min 0.000000 0.000000 0.000000 0.000000
max 0.111226 0.406224 0.530438 0.396653
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 81, "text": [ " a b c d\n", "min 0.000000 0.000000 0.000000 0.000000\n", "max 0.111226 0.406224 0.530438 0.396653" ] } ], "prompt_number": 81 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply an element-wise Python function to a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "func_3 = lambda x: '%.2f' %x\n", "df_11.applymap(func_3)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcd
0 0.00 0.00 0.00 0.00
1 0.00 0.41 0.53 0.09
2 0.11 0.05 0.01 0.40
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 82, "text": [ " a b c d\n", "0 0.00 0.00 0.00 0.00\n", "1 0.00 0.41 0.53 0.09\n", "2 0.11 0.05 0.01 0.40" ] } ], "prompt_number": 82 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply an element-wise Python function to a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_11['a'].map(func_3)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 83, "text": [ "0 0.00\n", "1 0.00\n", "2 0.11\n", "Name: a, dtype: object" ] } ], "prompt_number": 83 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sorting and Ranking" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 84, "text": [ "fo 100\n", "br 200\n", "bz 300\n", "qx NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 84 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sort a Series by its index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.sort_index()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 85, "text": [ "br 200\n", "bz 300\n", "fo 100\n", "qx NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 85 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sort a Series by its values:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.order()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 86, "text": [ "fo 100\n", "br 200\n", "bz 300\n", "qx NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 86 }, { "cell_type": "code", "collapsed": false, "input": [ "df_12 = DataFrame(np.arange(12).reshape((3, 4)),\n", " index=['three', 'one', 'two'],\n", " columns=['c', 'a', 'b', 'd'])\n", "df_12" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cabd
three 0 1 2 3
one 4 5 6 7
two 8 9 10 11
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 87, "text": [ " c a b d\n", "three 0 1 2 3\n", "one 4 5 6 7\n", "two 8 9 10 11" ] } ], "prompt_number": 87 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sort a DataFrame by its index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_12.sort_index()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cabd
one 4 5 6 7
three 0 1 2 3
two 8 9 10 11
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 88, "text": [ " c a b d\n", "one 4 5 6 7\n", "three 0 1 2 3\n", "two 8 9 10 11" ] } ], "prompt_number": 88 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sort a DataFrame by columns in descending order:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_12.sort_index(axis=1, ascending=False)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dcba
three 3 0 2 1
one 7 4 6 5
two 11 8 10 9
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 89, "text": [ " d c b a\n", "three 3 0 2 1\n", "one 7 4 6 5\n", "two 11 8 10 9" ] } ], "prompt_number": 89 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sort a DataFrame's values by column:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_12.sort_index(by=['d', 'c'])" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cabd
three 0 1 2 3
one 4 5 6 7
two 8 9 10 11
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 90, "text": [ " c a b d\n", "three 0 1 2 3\n", "one 4 5 6 7\n", "two 8 9 10 11" ] } ], "prompt_number": 90 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ranking is similar to numpy.argsort except that ties are broken by assigning each group the mean rank:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_11 = Series([7, -5, 7, 4, 2, 0, 4, 7])\n", "ser_11 = ser_11.order()\n", "ser_11" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 91, "text": [ "1 -5\n", "5 0\n", "4 2\n", "3 4\n", "6 4\n", "0 7\n", "2 7\n", "7 7\n", "dtype: int64" ] } ], "prompt_number": 91 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_11.rank()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 92, "text": [ "1 1.0\n", "5 2.0\n", "4 3.0\n", "3 4.5\n", "6 4.5\n", "0 7.0\n", "2 7.0\n", "7 7.0\n", "dtype: float64" ] } ], "prompt_number": 92 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rank a Series according to when they appear in the data:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_11.rank(method='first')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 93, "text": [ "1 1\n", "5 2\n", "4 3\n", "3 4\n", "6 5\n", "0 6\n", "2 7\n", "7 8\n", "dtype: float64" ] } ], "prompt_number": 93 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rank a Series in descending order, using the maximum rank for the group:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_11.rank(ascending=False, method='max')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 94, "text": [ "1 8\n", "5 7\n", "4 6\n", "3 5\n", "6 5\n", "0 3\n", "2 3\n", "7 3\n", "dtype: float64" ] } ], "prompt_number": 94 }, { "cell_type": "markdown", "metadata": {}, "source": [ "DataFrames can rank over rows or columns." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_13 = DataFrame({'foo' : [7, -5, 7, 4, 2, 0, 4, 7],\n", " 'bar' : [-5, 4, 2, 0, 4, 7, 7, 8],\n", " 'baz' : [-1, 2, 3, 0, 5, 9, 9, 5]})\n", "df_13" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
barbazfoo
0-5-1 7
1 4 2-5
2 2 3 7
3 0 0 4
4 4 5 2
5 7 9 0
6 7 9 4
7 8 5 7
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 95, "text": [ " bar baz foo\n", "0 -5 -1 7\n", "1 4 2 -5\n", "2 2 3 7\n", "3 0 0 4\n", "4 4 5 2\n", "5 7 9 0\n", "6 7 9 4\n", "7 8 5 7" ] } ], "prompt_number": 95 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rank a DataFrame over rows:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_13.rank()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
barbazfoo
0 1.0 1.0 7.0
1 4.5 3.0 1.0
2 3.0 4.0 7.0
3 2.0 2.0 4.5
4 4.5 5.5 3.0
5 6.5 7.5 2.0
6 6.5 7.5 4.5
7 8.0 5.5 7.0
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 96, "text": [ " bar baz foo\n", "0 1.0 1.0 7.0\n", "1 4.5 3.0 1.0\n", "2 3.0 4.0 7.0\n", "3 2.0 2.0 4.5\n", "4 4.5 5.5 3.0\n", "5 6.5 7.5 2.0\n", "6 6.5 7.5 4.5\n", "7 8.0 5.5 7.0" ] } ], "prompt_number": 96 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rank a DataFrame over columns:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_13.rank(axis=1)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
barbazfoo
0 1.0 2.0 3
1 3.0 2.0 1
2 1.0 2.0 3
3 1.5 1.5 3
4 2.0 3.0 1
5 2.0 3.0 1
6 2.0 3.0 1
7 3.0 1.0 2
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 97, "text": [ " bar baz foo\n", "0 1.0 2.0 3\n", "1 3.0 2.0 1\n", "2 1.0 2.0 3\n", "3 1.5 1.5 3\n", "4 2.0 3.0 1\n", "5 2.0 3.0 1\n", "6 2.0 3.0 1\n", "7 3.0 1.0 2" ] } ], "prompt_number": 97 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Axis Indexes with Duplicate Values" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Labels do not have to be unique in Pandas:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_12 = Series(range(5), index=['foo', 'foo', 'bar', 'bar', 'baz'])\n", "ser_12" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 98, "text": [ "foo 0\n", "foo 1\n", "bar 2\n", "bar 3\n", "baz 4\n", "dtype: int64" ] } ], "prompt_number": 98 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_12.index.is_unique" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 99, "text": [ "False" ] } ], "prompt_number": 99 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select Series elements:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_12['foo']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 100, "text": [ "foo 0\n", "foo 1\n", "dtype: int64" ] } ], "prompt_number": 100 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select DataFrame elements:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_14 = DataFrame(np.random.randn(5, 4),\n", " index=['foo', 'foo', 'bar', 'bar', 'baz'])\n", "df_14" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123
foo-2.363469 1.135345-1.017014 0.637362
foo-0.859907 1.772608-1.110363 0.181214
bar 0.564345-0.566510 0.729976 0.372994
bar 0.533811-0.091973 1.913820 0.330797
baz 1.141943-1.129595-0.850052 0.960820
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 101, "text": [ " 0 1 2 3\n", "foo -2.363469 1.135345 -1.017014 0.637362\n", "foo -0.859907 1.772608 -1.110363 0.181214\n", "bar 0.564345 -0.566510 0.729976 0.372994\n", "bar 0.533811 -0.091973 1.913820 0.330797\n", "baz 1.141943 -1.129595 -0.850052 0.960820" ] } ], "prompt_number": 101 }, { "cell_type": "code", "collapsed": false, "input": [ "df_14.ix['bar']" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123
bar 0.564345-0.566510 0.729976 0.372994
bar 0.533811-0.091973 1.913820 0.330797
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 102, "text": [ " 0 1 2 3\n", "bar 0.564345 -0.566510 0.729976 0.372994\n", "bar 0.533811 -0.091973 1.913820 0.330797" ] } ], "prompt_number": 102 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summarizing and Computing Descriptive Statistics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unlike NumPy arrays, Pandas descriptive statistics automatically exclude missing data. NaN values are excluded unless the entire row or column is NA." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
statepopunemplyear
0 VA 5.0 NaN 2012
1 VA 5.1 NaN 2013
2 VA 5.2 6.0 2014
3 MD 4.0 6.0 2014
4 MD 4.1 6.1 2015
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
\n", "
" ], "metadata": {}, "output_type": "pyout", "prompt_number": 120, "text": [ " state pop unempl year\n", "0 VA 5.0 NaN 2012\n", "1 VA 5.1 NaN 2013\n", "2 VA 5.2 6.0 2014\n", "3 MD 4.0 6.0 2014\n", "4 MD 4.1 6.1 2015\n", "5 NaN NaN NaN NaN\n", "6 NaN NaN NaN NaN" ] } ], "prompt_number": 120 }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.sum()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 112, "text": [ "pop 23.4\n", "unempl 18.1\n", "year 10068.0\n", "dtype: float64" ] } ], "prompt_number": 112 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sum over the rows:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.sum(axis=1)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 113, "text": [ "0 2017.0\n", "1 2018.1\n", "2 2025.2\n", "3 2024.0\n", "4 2025.2\n", "5 NaN\n", "6 NaN\n", "dtype: float64" ] } ], "prompt_number": 113 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Account for NaNs:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.sum(axis=1, skipna=False)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 115, "text": [ "0 NaN\n", "1 NaN\n", "2 2025.2\n", "3 2024.0\n", "4 2025.2\n", "5 NaN\n", "6 NaN\n", "dtype: float64" ] } ], "prompt_number": 115 }, { "cell_type": "code", "collapsed": false, "input": [ "df_6.idxmax()" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "could not convert string to float: MD", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf_6\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0midxmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/dmartin/anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc\u001b[0m in \u001b[0;36midxmax\u001b[0;34m(self, axis, skipna)\u001b[0m\n\u001b[1;32m 4197\u001b[0m \"\"\"\n\u001b[1;32m 4198\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4199\u001b[0;31m \u001b[0mindices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnanops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnanargmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4200\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4201\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mNA\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/dmartin/anaconda/lib/python2.7/site-packages/pandas/core/nanops.pyc\u001b[0m in \u001b[0;36mnanargmax\u001b[0;34m(values, axis, skipna)\u001b[0m\n\u001b[1;32m 432\u001b[0m \"\"\"\n\u001b[1;32m 433\u001b[0m values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf',\n\u001b[0;32m--> 434\u001b[0;31m isfinite=True)\n\u001b[0m\u001b[1;32m 435\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_maybe_arg_null_out\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/dmartin/anaconda/lib/python2.7/site-packages/pandas/core/nanops.pyc\u001b[0m in \u001b[0;36m_get_values\u001b[0;34m(values, skipna, fill_value, fill_value_typ, isfinite, copy)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_values_from_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misfinite\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_isfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0misnull\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/dmartin/anaconda/lib/python2.7/site-packages/pandas/core/nanops.pyc\u001b[0m in \u001b[0;36m_isfinite\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 200\u001b[0m is_integer_dtype(values) or is_bool_dtype(values)):\n\u001b[1;32m 201\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m~\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 202\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m~\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'float64'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 203\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 204\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: could not convert string to float: MD" ] } ], "prompt_number": 117 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }