{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Operations in TensorFlow\n", "\n", "Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n", "\n", "## Setup\n", "\n", "Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Basic constant operations\n", "# The value returned by the constructor represents the output\n", "# of the Constant op.\n", "a = tf.constant(2)\n", "b = tf.constant(3)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a=2, b=3\n", "Addition with constants: 5\n", "Multiplication with constants: 6\n" ] } ], "source": [ "# Launch the default graph.\n", "with tf.Session() as sess:\n", " print \"a=2, b=3\"\n", " print \"Addition with constants: %i\" % sess.run(a+b)\n", " print \"Multiplication with constants: %i\" % sess.run(a*b)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Basic Operations with variable as graph input\n", "# The value returned by the constructor represents the output\n", "# of the Variable op. (define as input when running session)\n", "# tf Graph input\n", "a = tf.placeholder(tf.int16)\n", "b = tf.placeholder(tf.int16)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Define some operations\n", "add = tf.add(a, b)\n", "mul = tf.mul(a, b)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Addition with variables: 5\n", "Multiplication with variables: 6\n" ] } ], "source": [ "# Launch the default graph.\n", "with tf.Session() as sess:\n", " # Run every operation with variable input\n", " print \"Addition with variables: %i\" % sess.run(add, feed_dict={a: 2, b: 3})\n", " print \"Multiplication with variables: %i\" % sess.run(mul, feed_dict={a: 2, b: 3})" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ----------------\n", "# More in details:\n", "# Matrix Multiplication from TensorFlow official tutorial\n", "\n", "# Create a Constant op that produces a 1x2 matrix. The op is\n", "# added as a node to the default graph.\n", "#\n", "# The value returned by the constructor represents the output\n", "# of the Constant op.\n", "matrix1 = tf.constant([[3., 3.]])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create another Constant that produces a 2x1 matrix.\n", "matrix2 = tf.constant([[2.],[2.]])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.\n", "# The returned value, 'product', represents the result of the matrix\n", "# multiplication.\n", "product = tf.matmul(matrix1, matrix2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 12.]]\n" ] } ], "source": [ "# To run the matmul op we call the session 'run()' method, passing 'product'\n", "# which represents the output of the matmul op. This indicates to the call\n", "# that we want to get the output of the matmul op back.\n", "#\n", "# All inputs needed by the op are run automatically by the session. They\n", "# typically are run in parallel.\n", "#\n", "# The call 'run(product)' thus causes the execution of threes ops in the\n", "# graph: the two constants and matmul.\n", "#\n", "# The output of the op is returned in 'result' as a numpy `ndarray` object.\n", "with tf.Session() as sess:\n", " result = sess.run(product)\n", " print result" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.5+" } }, "nbformat": 4, "nbformat_minor": 0 }