{ "metadata": { "name": "", "signature": "sha256:1d555e34f97d4a24383bba48a1c34b1526e08e18276d519d2c8afaf3ff0550f4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Pandas\n", "\n", "* Series\n", "* DataFrame" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from pandas import Series, DataFrame\n", "import pandas as pd" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Series\n", "\n", "A Series is a one-dimensional array-like object containing an array of data and an associated array of data labels. The data can be any NumPy data type and the labels are the Series' index." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1 = Series([1, 1, 2, -3, -5, 8, 13])\n", "ser_1" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "0 1\n", "1 1\n", "2 2\n", "3 -3\n", "4 -5\n", "5 8\n", "6 13\n", "dtype: int64" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the array representation of a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1.values" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "array([ 1, 1, 2, -3, -5, 8, 13])" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the index of the Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_1.index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "Int64Index([0, 1, 2, 3, 4, 5, 6], dtype='int64')" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a Series with a custom index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2 = Series([1, 1, 2, -3, -5], index=['a', 'b', 'c', 'd', 'e'])\n", "ser_2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "a 1\n", "b 1\n", "c 2\n", "d -3\n", "e -5\n", "dtype: int64" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get a value from a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[4] == ser_2['e']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "True" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get a set of values from a Series by passing in a list:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[['c', 'a', 'b']]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "c 2\n", "a 1\n", "b 1\n", "dtype: int64" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get values great than 0:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2[ser_2 > 0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ "a 1\n", "b 1\n", "c 2\n", "dtype: int64" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Scalar multiply:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_2 * 2" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 9, "text": [ "a 2\n", "b 2\n", "c 4\n", "d -6\n", "e -10\n", "dtype: int64" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply a numpy math function:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "np.exp(ser_2)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ "a 2.718282\n", "b 2.718282\n", "c 7.389056\n", "d 0.049787\n", "e 0.006738\n", "dtype: float64" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "A Series is like a fixed-length, ordered dict. \n", "\n", "Create a series by passing in a dict:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "dict_1 = {'foo' : 100, 'bar' : 200, 'baz' : 300}\n", "ser_3 = Series(dict_1)\n", "ser_3" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 11, "text": [ "bar 200\n", "baz 300\n", "foo 100\n", "dtype: int64" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Re-order a Series by passing in an index (indices not found are NaN):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "index = ['foo', 'bar', 'baz', 'qux']\n", "ser_4 = Series(dict_1, index=index)\n", "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ "foo 100\n", "bar 200\n", "baz 300\n", "qux NaN\n", "dtype: float64" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check for NaN with the pandas method:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "pd.isnull(ser_4)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 13, "text": [ "foo False\n", "bar False\n", "baz False\n", "qux True\n", "dtype: bool" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check for NaN with the Series method:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.isnull()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 14, "text": [ "foo False\n", "bar False\n", "baz False\n", "qux True\n", "dtype: bool" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Series automatically aligns differently indexed data in arithmetic operations:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_3 + ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ "bar 400\n", "baz 600\n", "foo 200\n", "qux NaN\n", "dtype: float64" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name a Series:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.name = 'foobarbazqux'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Name a Series index:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.index.name = 'label'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 18, "text": [ "label\n", "foo 100\n", "bar 200\n", "baz 300\n", "qux NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 18 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rename a Series' index in place:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ser_4.index = ['fo', 'br', 'bz', 'qx']\n", "ser_4" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 19, "text": [ "fo 100\n", "br 200\n", "bz 300\n", "qx NaN\n", "Name: foobarbazqux, dtype: float64" ] } ], "prompt_number": 19 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DataFrame\n", "\n", "A DataFrame is a tabular data structure containing an ordered collection of columns. Each column can have a different type. DataFrames have both row and column indices and is analogous to a dict of Series. Row and column operations are treated roughly symmetrically. Columns returned when indexing a DataFrame are views of the underlying data, not a copy. To obtain a copy, use the Series' copy method.\n", "\n", "Create a DataFrame:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "data_1 = {'state': ['VA', 'VA', 'VA', 'MD', 'MD'],\n", " 'year': [2012, 2013, 2014, 2014, 2015],\n", " 'pop': [5.0, 5.1, 5.2, 4.0, 4.1]}\n", "frame_1 = DataFrame(data_1)\n", "frame_1" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", " | pop | \n", "state | \n", "year | \n", "
---|---|---|---|
0 | \n", "5.0 | \n", "VA | \n", "2012 | \n", "
1 | \n", "5.1 | \n", "VA | \n", "2013 | \n", "
2 | \n", "5.2 | \n", "VA | \n", "2014 | \n", "
3 | \n", "4.0 | \n", "MD | \n", "2014 | \n", "
4 | \n", "4.1 | \n", "MD | \n", "2015 | \n", "
5 rows \u00d7 3 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "
---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "
5 rows \u00d7 3 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "unempl | \n", "
---|---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "NaN | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "NaN | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "NaN | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "NaN | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "NaN | \n", "
5 rows \u00d7 4 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "unempl | \n", "
---|---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "0 | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "1 | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "2 | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "3 | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "4 | \n", "
5 rows \u00d7 4 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "unempl | \n", "
---|---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "NaN | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "NaN | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "6.0 | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "6.0 | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "6.1 | \n", "
5 rows \u00d7 4 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "unempl | \n", "state_dup | \n", "
---|---|---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "NaN | \n", "VA | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "NaN | \n", "VA | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "6.0 | \n", "VA | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "6.0 | \n", "MD | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "6.1 | \n", "MD | \n", "
5 rows \u00d7 5 columns
\n", "\n", " | year | \n", "state | \n", "pop | \n", "unempl | \n", "
---|---|---|---|---|
0 | \n", "2012 | \n", "VA | \n", "5.0 | \n", "NaN | \n", "
1 | \n", "2013 | \n", "VA | \n", "5.1 | \n", "NaN | \n", "
2 | \n", "2014 | \n", "VA | \n", "5.2 | \n", "6.0 | \n", "
3 | \n", "2014 | \n", "MD | \n", "4.0 | \n", "6.0 | \n", "
4 | \n", "2015 | \n", "MD | \n", "4.1 | \n", "6.1 | \n", "
5 rows \u00d7 4 columns
\n", "\n", " | MD | \n", "VA | \n", "
---|---|---|
2013 | \n", "NaN | \n", "5.1 | \n", "
2014 | \n", "4.0 | \n", "5.2 | \n", "
2015 | \n", "4.1 | \n", "NaN | \n", "
3 rows \u00d7 2 columns
\n", "\n", " | 2013 | \n", "2014 | \n", "2015 | \n", "
---|---|---|---|
MD | \n", "NaN | \n", "4.0 | \n", "4.1 | \n", "
VA | \n", "5.1 | \n", "5.2 | \n", "NaN | \n", "
2 rows \u00d7 3 columns
\n", "\n", " | MD | \n", "VA | \n", "
---|---|---|
2014 | \n", "NaN | \n", "5.2 | \n", "
2015 | \n", "4.1 | \n", "NaN | \n", "
2 rows \u00d7 2 columns
\n", "\n", " | MD | \n", "VA | \n", "
---|---|---|
year | \n", "\n", " | \n", " |
2014 | \n", "NaN | \n", "5.2 | \n", "
2015 | \n", "4.1 | \n", "NaN | \n", "
2 rows \u00d7 2 columns
\n", "state | \n", "MD | \n", "VA | \n", "
---|---|---|
year | \n", "\n", " | \n", " |
2014 | \n", "NaN | \n", "5.2 | \n", "
2015 | \n", "4.1 | \n", "NaN | \n", "
2 rows \u00d7 2 columns
\n", "