{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "kR-4eNdK6lYS" }, "source": [ "Deep Learning with TensorFlow\n", "=============\n", "\n", "Credits: Forked from [TensorFlow](https://github.com/tensorflow/tensorflow) by Google\n", "\n", "Setup\n", "------------\n", "\n", "Refer to the [setup instructions](https://github.com/donnemartin/data-science-ipython-notebooks/tree/feature/deep-learning/deep-learning/tensor-flow-exercises/README.md).\n", "\n", "Exercise 2\n", "------------\n", "\n", "Previously in `1_notmnist.ipynb`, we created a pickle with formatted datasets for training, development and testing on the [notMNIST dataset](http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html).\n", "\n", "The goal of this exercise is to progressively train deeper and more accurate models using TensorFlow." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "collapsed": true, "id": "JLpLa8Jt7Vu4" }, "outputs": [], "source": [ "# These are all the modules we'll be using later. Make sure you can import them\n", "# before proceeding further.\n", "import cPickle as pickle\n", "import numpy as np\n", "import tensorflow as tf" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "1HrCK6e17WzV" }, "source": [ "First reload the data we generated in `1_notmist.ipynb`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "output_extras": [ { "item_id": 1 } ] }, "colab_type": "code", "collapsed": false, "executionInfo": { "elapsed": 19456, "status": "ok", "timestamp": 1449847956073, "user": { "color": "", "displayName": "", "isAnonymous": false, "isMe": true, "permissionId": "", "photoUrl": "", "sessionId": "0", "userId": "" }, "user_tz": 480 }, "id": "y3-cj1bpmuxc", "outputId": "0ddb1607-1fc4-4ddb-de28-6c7ab7fb0c33" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training set (200000, 28, 28) (200000,)\n", "Validation set (10000, 28, 28) (10000,)\n", "Test set (18724, 28, 28) (18724,)\n" ] } ], "source": [ "pickle_file = 'notMNIST.pickle'\n", "\n", "with open(pickle_file, 'rb') as f:\n", " save = pickle.load(f)\n", " train_dataset = save['train_dataset']\n", " train_labels = save['train_labels']\n", " valid_dataset = save['valid_dataset']\n", " valid_labels = save['valid_labels']\n", " test_dataset = save['test_dataset']\n", " test_labels = save['test_labels']\n", " del save # hint to help gc free up memory\n", " print 'Training set', train_dataset.shape, train_labels.shape\n", " print 'Validation set', valid_dataset.shape, valid_labels.shape\n", " print 'Test set', test_dataset.shape, test_labels.shape" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "L7aHrm6nGDMB" }, "source": [ "Reformat into a shape that's more adapted to the models we're going to train:\n", "- data as a flat matrix,\n", "- labels as float 1-hot encodings." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "output_extras": [ { "item_id": 1 } ] }, "colab_type": "code", "collapsed": false, "executionInfo": { "elapsed": 19723, "status": "ok", "timestamp": 1449847956364, "user": { "color": "", "displayName": "", "isAnonymous": false, "isMe": true, "permissionId": "", "photoUrl": "", "sessionId": "0", "userId": "" }, "user_tz": 480 }, "id": "IRSyYiIIGIzS", "outputId": "2ba0fc75-1487-4ace-a562-cf81cae82793" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training set (200000, 784) (200000, 10)\n", "Validation set (10000, 784) (10000, 10)\n", "Test set (18724, 784) (18724, 10)\n" ] } ], "source": [ "image_size = 28\n", "num_labels = 10\n", "\n", "def reformat(dataset, labels):\n", " dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)\n", " # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]\n", " labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)\n", " return dataset, labels\n", "train_dataset, train_labels = reformat(train_dataset, train_labels)\n", "valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)\n", "test_dataset, test_labels = reformat(test_dataset, test_labels)\n", "print 'Training set', train_dataset.shape, train_labels.shape\n", "print 'Validation set', valid_dataset.shape, valid_labels.shape\n", "print 'Test set', test_dataset.shape, test_labels.shape" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "nCLVqyQ5vPPH" }, "source": [ "We're first going to train a multinomial logistic regression using simple gradient descent.\n", "\n", "TensorFlow works like this:\n", "* First you describe the computation that you want to see performed: what the inputs, the variables, and the operations look like. These get created as nodes over a computation graph. This description is all contained within the block below:\n", "\n", " with graph.as_default():\n", " ...\n", "\n", "* Then you can run the operations on this graph as many times as you want by calling `session.run()`, providing it outputs to fetch from the graph that get returned. This runtime operation is all contained in the block below:\n", "\n", " with tf.Session(graph=graph) as session:\n", " ...\n", "\n", "Let's load all the data into TensorFlow and build the computation graph corresponding to our training:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "collapsed": true, "id": "Nfv39qvtvOl_" }, "outputs": [], "source": [ "# With gradient descent training, even this much data is prohibitive.\n", "# Subset the training data for faster turnaround.\n", "train_subset = 10000\n", "\n", "graph = tf.Graph()\n", "with graph.as_default():\n", "\n", " # Input data.\n", " # Load the training, validation and test data into constants that are\n", " # attached to the graph.\n", " tf_train_dataset = tf.constant(train_dataset[:train_subset, :])\n", " tf_train_labels = tf.constant(train_labels[:train_subset])\n", " tf_valid_dataset = tf.constant(valid_dataset)\n", " tf_test_dataset = tf.constant(test_dataset)\n", " \n", " # Variables.\n", " # These are the parameters that we are going to be training. The weight\n", " # matrix will be initialized using random valued following a (truncated)\n", " # normal distribution. The biases get initialized to zero.\n", " weights = tf.Variable(\n", " tf.truncated_normal([image_size * image_size, num_labels]))\n", " biases = tf.Variable(tf.zeros([num_labels]))\n", " \n", " # Training computation.\n", " # We multiply the inputs with the weight matrix, and add biases. We compute\n", " # the softmax and cross-entropy (it's one operation in TensorFlow, because\n", " # it's very common, and it can be optimized). We take the average of this\n", " # cross-entropy across all training examples: that's our loss.\n", " logits = tf.matmul(tf_train_dataset, weights) + biases\n", " loss = tf.reduce_mean(\n", " tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))\n", " \n", " # Optimizer.\n", " # We are going to find the minimum of this loss using gradient descent.\n", " optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)\n", " \n", " # Predictions for the training, validation, and test data.\n", " # These are not part of training, but merely here so that we can report\n", " # accuracy figures as we train.\n", " train_prediction = tf.nn.softmax(logits)\n", " valid_prediction = tf.nn.softmax(\n", " tf.matmul(tf_valid_dataset, weights) + biases)\n", " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "KQcL4uqISHjP" }, "source": [ "Let's run this computation and iterate:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "output_extras": [ { "item_id": 9 } ] }, "colab_type": "code", "collapsed": false, "executionInfo": { "elapsed": 57454, "status": "ok", "timestamp": 1449847994134, "user": { "color": "", "displayName": "", "isAnonymous": false, "isMe": true, "permissionId": "", "photoUrl": "", "sessionId": "0", "userId": "" }, "user_tz": 480 }, "id": "z2cjdenH869W", "outputId": "4c037ba1-b526-4d8e-e632-91e2a0333267" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", "Loss at step 0 : 17.2939\n", "Training accuracy: 10.8%\n", "Validation accuracy: 13.8%\n", "Loss at step 100 : 2.26903\n", "Training accuracy: 72.3%\n", "Validation accuracy: 71.6%\n", "Loss at step 200 : 1.84895\n", "Training accuracy: 74.9%\n", "Validation accuracy: 73.9%\n", "Loss at step 300 : 1.60701\n", "Training accuracy: 76.0%\n", "Validation accuracy: 74.5%\n", "Loss at step 400 : 1.43912\n", "Training accuracy: 76.8%\n", "Validation accuracy: 74.8%\n", "Loss at step 500 : 1.31349\n", "Training accuracy: 77.5%\n", "Validation accuracy: 75.0%\n", "Loss at step 600 : 1.21501\n", "Training accuracy: 78.1%\n", "Validation accuracy: 75.4%\n", "Loss at step 700 : 1.13515\n", "Training accuracy: 78.6%\n", "Validation accuracy: 75.4%\n", "Loss at step 800 : 1.0687\n", "Training accuracy: 79.2%\n", "Validation accuracy: 75.6%\n", "Test accuracy: 82.9%\n" ] } ], "source": [ "num_steps = 801\n", "\n", "def accuracy(predictions, labels):\n", " return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))\n", " / predictions.shape[0])\n", "\n", "with tf.Session(graph=graph) as session:\n", " # This is a one-time operation which ensures the parameters get initialized as\n", " # we described in the graph: random weights for the matrix, zeros for the\n", " # biases. \n", " tf.initialize_all_variables().run()\n", " print 'Initialized'\n", " for step in xrange(num_steps):\n", " # Run the computations. We tell .run() that we want to run the optimizer,\n", " # and get the loss value and the training predictions returned as numpy\n", " # arrays.\n", " _, l, predictions = session.run([optimizer, loss, train_prediction])\n", " if (step % 100 == 0):\n", " print 'Loss at step', step, ':', l\n", " print 'Training accuracy: %.1f%%' % accuracy(\n", " predictions, train_labels[:train_subset, :])\n", " # Calling .eval() on valid_prediction is basically like calling run(), but\n", " # just to get that one numpy array. Note that it recomputes all its graph\n", " # dependencies.\n", " print 'Validation accuracy: %.1f%%' % accuracy(\n", " valid_prediction.eval(), valid_labels)\n", " print 'Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "x68f-hxRGm3H" }, "source": [ "Let's now switch to stochastic gradient descent training instead, which is much faster.\n", "\n", "The graph will be similar, except that instead of holding all the training data into a constant node, we create a `Placeholder` node which will be fed actual data at every call of `sesion.run()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "collapsed": true, "id": "qhPMzWYRGrzM" }, "outputs": [], "source": [ "batch_size = 128\n", "\n", "graph = tf.Graph()\n", "with graph.as_default():\n", "\n", " # Input data. For the training data, we use a placeholder that will be fed\n", " # at run time with a training minibatch.\n", " tf_train_dataset = tf.placeholder(tf.float32,\n", " shape=(batch_size, image_size * image_size))\n", " tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))\n", " tf_valid_dataset = tf.constant(valid_dataset)\n", " tf_test_dataset = tf.constant(test_dataset)\n", " \n", " # Variables.\n", " weights = tf.Variable(\n", " tf.truncated_normal([image_size * image_size, num_labels]))\n", " biases = tf.Variable(tf.zeros([num_labels]))\n", " \n", " # Training computation.\n", " logits = tf.matmul(tf_train_dataset, weights) + biases\n", " loss = tf.reduce_mean(\n", " tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))\n", " \n", " # Optimizer.\n", " optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)\n", " \n", " # Predictions for the training, validation, and test data.\n", " train_prediction = tf.nn.softmax(logits)\n", " valid_prediction = tf.nn.softmax(\n", " tf.matmul(tf_valid_dataset, weights) + biases)\n", " test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "XmVZESmtG4JH" }, "source": [ "Let's run it:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "both", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "output_extras": [ { "item_id": 6 } ] }, "colab_type": "code", "collapsed": false, "executionInfo": { "elapsed": 66292, "status": "ok", "timestamp": 1449848003013, "user": { "color": "", "displayName": "", "isAnonymous": false, "isMe": true, "permissionId": "", "photoUrl": "", "sessionId": "0", "userId": "" }, "user_tz": 480 }, "id": "FoF91pknG_YW", "outputId": "d255c80e-954d-4183-ca1c-c7333ce91d0a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initialized\n", "Minibatch loss at step 0 : 16.8091\n", "Minibatch accuracy: 12.5%\n", "Validation accuracy: 14.0%\n", "Minibatch loss at step 500 : 1.75256\n", "Minibatch accuracy: 77.3%\n", "Validation accuracy: 75.0%\n", "Minibatch loss at step 1000 : 1.32283\n", "Minibatch accuracy: 77.3%\n", "Validation accuracy: 76.6%\n", "Minibatch loss at step 1500 : 0.944533\n", "Minibatch accuracy: 83.6%\n", "Validation accuracy: 76.5%\n", "Minibatch loss at step 2000 : 1.03795\n", "Minibatch accuracy: 78.9%\n", "Validation accuracy: 77.8%\n", "Minibatch loss at step 2500 : 1.10219\n", "Minibatch accuracy: 80.5%\n", "Validation accuracy: 78.0%\n", "Minibatch loss at step 3000 : 0.758874\n", "Minibatch accuracy: 82.8%\n", "Validation accuracy: 78.8%\n", "Test accuracy: 86.1%\n" ] } ], "source": [ "num_steps = 3001\n", "\n", "with tf.Session(graph=graph) as session:\n", " tf.initialize_all_variables().run()\n", " print \"Initialized\"\n", " for step in xrange(num_steps):\n", " # Pick an offset within the training data, which has been randomized.\n", " # Note: we could use better randomization across epochs.\n", " offset = (step * batch_size) % (train_labels.shape[0] - batch_size)\n", " # Generate a minibatch.\n", " batch_data = train_dataset[offset:(offset + batch_size), :]\n", " batch_labels = train_labels[offset:(offset + batch_size), :]\n", " # Prepare a dictionary telling the session where to feed the minibatch.\n", " # The key of the dictionary is the placeholder node of the graph to be fed,\n", " # and the value is the numpy array to feed to it.\n", " feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}\n", " _, l, predictions = session.run(\n", " [optimizer, loss, train_prediction], feed_dict=feed_dict)\n", " if (step % 500 == 0):\n", " print \"Minibatch loss at step\", step, \":\", l\n", " print \"Minibatch accuracy: %.1f%%\" % accuracy(predictions, batch_labels)\n", " print \"Validation accuracy: %.1f%%\" % accuracy(\n", " valid_prediction.eval(), valid_labels)\n", " print \"Test accuracy: %.1f%%\" % accuracy(test_prediction.eval(), test_labels)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "7omWxtvLLxik" }, "source": [ "---\n", "Problem\n", "-------\n", "\n", "Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units (nn.relu()) and 1024 hidden nodes. This model should improve your validation / test accuracy.\n", "\n", "---" ] } ], "metadata": { "colabVersion": "0.3.2", "colab_default_view": {}, "colab_views": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }