{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# NumPy\n", "\n", "Credits: Forked from [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel\n", "\n", "* NumPy Arrays, dtype, and shape\n", "* Common Array Operations\n", "* Reshape and Update In-Place\n", "* Combine Arrays\n", "* Create Sample Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NumPy Arrays, dtypes, and shapes" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 3]\n", "(3,)\n", "int64\n" ] } ], "source": [ "a = np.array([1, 2, 3])\n", "print(a)\n", "print(a.shape)\n", "print(a.dtype)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0 2 4]\n", " [1 3 5]]\n", "(2, 3)\n", "int64\n" ] } ], "source": [ "b = np.array([[0, 2, 4], [1, 3, 5]])\n", "print(b)\n", "print(b.shape)\n", "print(b.dtype)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0., 0., 0., 0., 0.])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.zeros(5)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 1, 1, 1],\n", " [1, 1, 1, 1],\n", " [1, 1, 1, 1]], dtype=int32)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.ones(shape=(3, 4), dtype=np.int32)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Common Array Operations" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 1. 2. ]\n", " [ 0.5 1.5 2.5]]\n", "(2, 3)\n", "float64\n" ] } ], "source": [ "c = b * 0.5\n", "print(c)\n", "print(c.shape)\n", "print(c.dtype)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1. 3. 5. ]\n", " [ 1.5 3.5 5.5]]\n" ] } ], "source": [ "d = a + c\n", "print(d)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1., 3., 5.])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d[0]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d[0, 0]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 1.5])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d[:, 0]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "19.5" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.sum()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.25" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.mean()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 2.5, 6.5, 10.5])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.sum(axis=0)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 3. , 3.5])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.mean(axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reshape and Update In-Place" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0 1 2 3 4 5 6 7 8 9 10 11]\n" ] } ], "source": [ "e = np.arange(12)\n", "print(e)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0 1 2 3]\n", " [ 4 5 6 7]\n", " [ 8 9 10 11]]\n" ] } ], "source": [ "# f is a view of contents of e\n", "f = e.reshape(3, 4)\n", "print(f)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 3 4 0 0 0 0 0 0 0]\n" ] } ], "source": [ "# Set values of e from index 5 onwards to 0\n", "e[5:] = 0\n", "print(e)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 1, 2, 3],\n", " [4, 0, 0, 0],\n", " [0, 0, 0, 0]])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# f is also updated\n", "f" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " C_CONTIGUOUS : True\n", " F_CONTIGUOUS : False\n", " OWNDATA : False\n", " WRITEABLE : True\n", " ALIGNED : True\n", " UPDATEIFCOPY : False" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# OWNDATA shows f does not own its data\n", "f.flags" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Combine Arrays" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 2, 4],\n", " [1, 3, 5]])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , 3. , 5. ],\n", " [ 1.5, 3.5, 5.5]])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3, 1, 2, 3, 1, 2, 3])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.concatenate([a, a, a])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , 2. , 3. ],\n", " [ 0. , 2. , 4. ],\n", " [ 1. , 3. , 5. ],\n", " [ 1. , 3. , 5. ],\n", " [ 1.5, 3.5, 5.5]])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Use broadcasting when needed to do this automatically\n", "np.vstack([a, b, d])" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0. , 2. , 4. , 1. , 3. , 5. ],\n", " [ 1. , 3. , 5. , 1.5, 3.5, 5.5]])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# In machine learning, useful to enrich or \n", "# add new/concatenate features with hstack\n", "np.hstack([b, d])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create Sample Data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import pylab as plt\n", "import seaborn\n", "\n", "seaborn.set()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFVCAYAAADc5IdQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVOed5vGnG4QsUEfIThtsS0aOjF5dBjzxLTGyPcYp\neYORnDhmk0lIdsCIyUzwkpmprVTG2aS2pmarXGVI1Xg9MzWL8MZ2ZWELk2yCZBNjO/bGhM0wWBOS\nIF4wRjIei42MBS0QunbvH90yuqulvpw+53w/Va7i9Gm1fq9F8+icPv10IBaLCQAAOCfo9AAAAPgd\nYQwAgMMIYwAAHEYYAwDgMMIYAACHEcYAADhs/nQ7jTF5kp6RtExSvqS/tdbuG7W/QdJ3JQ1JesZa\n25TBWQEA8KSZjozXS+qy1t4r6bOSnh7ZkQjq70uqk/RHkv7UGHNtpgYFAMCrZgrjPZK+N+q+Q6P2\nVUl621p7wVo7KOlNSfemf0QAALxt2tPU1tpLkmSMCSkezN8Ztftjki6M2u6RVJTuAQEA8Lppw1iS\njDGlkn4k6e+ttbtH7bogKTRqOySpe7rHisVisUAgMJc5AQBwhd6+QX3pOy+OuW3f9s9NG34zXcC1\nRNLLkr5hrf35uN3HJS03xhRLuqT4Keonp3u8QCCgrq6e6e7iCuFwiHXkCC+sQfLGOrywBol15BI3\nrsG+262m5rZZf91MR8aPK37q+XvGmJHXjndIWmSt3WGM+StJP1P89eSd1trOWU8AAIDLDQ4Na+8b\n7+jA4TMKBAJqWFWmXxx9X+cvDiT19TO9ZvxNSd+cZn+zpOZZTQwAgIe0n42oqblN739wSUuuXqjG\n+iqVX1+kWyvCemrvUXX39P/bTI8x42vGAABgouFoVC2HOrTvYLuGozF95rYSrbuvXPl58yRJy5aG\ntH1LrcLhUMlMj0UYAwAwS53nLqmpuU2nOyMqDuXr0bVVqim7es6PRxgDAJCkaCym1468pz2vn9Lg\nUFR31SzV+rrlWnhVXkqPSxgDAJCEDyN92tnSpraObhUW5GlzfbVur0xP8SRhDADANGKxmA797qx+\neOCELvcP65bya7RhTaWKCvPT9j0IYwAAphDpHdDz+62OnOhS/oJ52rimUnevvE7pLrAijAEAmETr\nyS49+9JxRXoHVVG6WJvWVim8uCAj34swBgBglMv9Q9r16km9ebRT8+cF9MXVN+uBO0sVzGCdM2EM\nAEDC8Y5u7Wxp07lIn25cUqjN9dW6IVyY8e9LGAMAfG+kzvLlw2cUTNRZNtSWaf68mT5pOD0IYwCA\nr42psywuUGNDtcqvz+4nAhPGAABfGhqO6sVDHdr3y0Sd5a0lWrf6Sp1lNhHGAADfiddZHtPpzp60\n1FmmijAGAPjGxDrLJVpfV5FynWWqCGMAgC9kss4yVYQxAMDTslFnmSrCGADgWZHeAT233+qtRJ3l\nhjWVuicDdZapIowBAJ40ps6ypEib6qszVmeZKsIYAOApk9ZZ3lGqYDC3joZHI4wBAJ4xvs6ysb5a\nJVmos0wVYQwAcL3RdZaBgFS/qkwPZbHOMlWEMQDA1drPRrRj3zF1nuuN11nWV6v8huzWWaaKMAYA\nuFIu1VmmijAGALjOhDrLB6tUc5NzdZapIowBAK4RjcX06pH39MKoOsuv1FVokcN1lqkijAEArnDu\nQp+eeTE36yxTRRgDAHKaG+osU0UYAwByyrbdrWpr75YC0vKSxSosyMv5OstUEcYAgJyxbXerjrV3\nxzdi0okz5yVJN15bqC1fWJGzdZapcse7oQEAvtA2EsTj9PQOejaIJcIYAJBDYlPt8NZZ6Qk4TQ0A\ncNxIneVkikP52vrIyixPlF2EMQDAUePrLHv7h9TTOygpHsTbt9Q6PGHmEcYAAEdMVWd59lyvntp7\nVMFgQI89vMLpMbOCMAYAZN10dZbLloa0fUutwuGQurp6HJ40OwhjAEDWeLXOMlWEMQAgK7xcZ5kq\nwhgAkFF+qLNMFWEMAMiYSO+AnttvPV9nmSrCGACQEa0nu/TsS8cV6R1URUmRNtVXe7pFKxWEMQAg\nrS73D2nXKyf15m86NX9eQF9cfbMeuKNUwSBHw1MhjAEAaXO8o1s7W9p0LtKnG5cUqrG+WiXhQqfH\nynmEMQAgZSN1li8fPqNgIKD6VWV6qLZM8+fxEQjJIIwBACkZX2fZ2FCt8uuLnB7LVQhjAMCcTFVn\nmZ83z+nRXIcwBgDM2nR1lpg9whgAkLTJ6izX11Vooc/rLFNFGAMAkkKdZeYQxgCAaVFnmXmEMQBg\nStRZZgdhDACY1Jg6y9LF2rS2ijrLDCGMAQBjXO4f0q5XT+rNo6PqLO8sVZCj4YwhjAEAHxlfZ7m5\nvlo3UGeZcYQxAGBCnWXDqjI1UGeZNYQxAPgcdZbOI4wBwKeos8wdhDEA+NCEOsu1Vaopo87SKYQx\nAPjIxDrLpVpft5w6S4cRxgDgE9RZ5i7CGAA8jjrL3EcYA4CHja+z3LimUndTZ5lzCGMA8JBtu1vV\n1t4tBaSScKEuXOynztIFCGMA8Ihtu1t1rL07vhGTzvz+oiSp7o4Sfen+5dRZ5jCqVQDAI9pGgnic\nfzneRRDnOMIYADxgcGhYMaeHwJxxmhoAXK79bERNzW2T7isO5WvrIyuzPBFmizAGAJeaUGd5W4mO\n2N/r/MUBSfEg3r6l1uEpkQzCGABcaKo6y7tXXKen9h5VMBjQYw+vcHpMJIkwBgAXicZieu3Ie9oz\nRZ3lsqUhbd9Sq3A4pK6uHoenRbKSCmNjzKckPWGtXT3u9r+UtElSV+Kmr1trT6R3RACAJH0Y6dPO\nFuosvWjGMDbGfEvSVyVdnGT3rZK+Zq1tTfdgAIA46iy9L5kj47clfUHS85Psu03S48aYpZJarLVP\npHM4APC7SO+Ant9vdYQ6S0+b8X3G1tofSRqaYvcuSV+XdL+ku40xa9M4GwD4WuvJLn2v6Vc6cqJL\nFaWL9TeP3ql7brmeIPagVC/g+jtrbUSSjDEtkj4pqWW6LwiHQyl+y9zAOnKHF9YgeWMdXliD5Pw6\nevsG1fST3+rAP7+r+fOCerShRp+7t1zB4OxC2Ol1pIMX1pCMOYexMaZI0lFjTLWkXsWPjnfO9HVe\nuLrPK1cpemEdXliD5I11eGENkvPrsO92q6m5TecifbpxSaE211frhnChzp2b7LKdqTm9jnTwwhqk\n5H6hmE0YxyTJGPNlSYXW2h3GmG9L+rmkfkmvWGv3z2VQAPC7waFh7X3jHR04fEaBQEANq8rUUFum\n+fNoLfaDpMLYWtsuaVXiz7tG3b5L8deNAQBzNFJn+f4Hl7SkuECNDdUqv77I6bGQRZR+AIBDhqNR\ntRzq0L6DiTrLW0u0bnW58vPmOT0asowwBgAHxOss23S6MzKmzhL+RBgDQBZNrLNcovV1FR/VWcKf\nCGMAyBLqLDEVwhgAMuxKneVJXe4fos4SExDGAJBB4+ssN6yp1D3UWWIcwhgAMqT1ZJeefem4Ir2D\nqihdrE1rqxReXOD0WMhBhDEApNnl/iHtevWk3jzaqfnzAvri6pv1wJ2lCnI0jCkQxgCQRuPrLBvr\nq1USLnR6LOQ4whgA0mB8nWX9qjI9RJ0lkkQYA0CKqLNEqghjAJgj6iyRLoQxAMzBhDrLB6tUcxN1\nlpgbwhgAZmGkzvKF109pgDpLpAlhDABJGl9n2UidJdKEMAaAGVBniUwjjAFgGtRZIhsIYwCYwpg6\ny5Iibaqvps4SGUEYA4Ckbbtb1dbeLQUkU7pYH19cMLbO8o5SBYMcDSMzCGMAvrdtd6uOtXfHN2LS\n8XfPS++e19KrC/SNh1dQZ4mMo6cNgO+1jQTxOH0DwwQxsoIwBuB7sSlu5yItZAunqQH41kid5WSK\nQ/na+sjKLE8EvyKMAfjS+DrLwaGoLl4elBQP4u1bah2eEH5CGAPwlcnqLL9SV6EPzvfpqb1HFQwG\n9NjDK5weEz5DGAPwjenqLBctzdP2LbUKh0Pq6upxeFL4DWEMwPOos0SuI4wBeBp1lnADwhiAZ1Fn\nCbcgjAF4zuX+Ie169SR1lnANwhiAp9h3u9XU3KZzkT7duKRQjfXVtGgh5xHGADxhcGhYe994RwcO\nn1EgEFD9qjI9VFum+fMoGkTuI4wBuF772Yiamtv0/geXtKS4QI0N1Sq/vsjpsYCkEcYAXGukznLf\nwXYNR2P6zK0lWre6XPl585weDZgVwhiAK42vs3z0wSrV3HS102MBc0IYA3CVkTrLPa+f0mCiznJ9\nXYUWXpXn9GjAnBHGAFxjfJ3l5lF1loCbEcYAch51lvA6whhATqPOEn5AGAPIWWPqLEsXa9PaKuos\n4UmEMYCcM2md5Z2lCnI0DI8ijAHklPF1lpvrq3UDdZbwOMIYQE4YX2fZsKpMDdRZwicIYwCOo84S\nfkcYA3DM0HBULx7q0L5fUmcJfyOMATgiXmd5TKc7e+J1lmurVFNGnSX8iTAGkFUT6yyXan3dcuos\n4WuEMYCsoc4SmBxhDCDjrtRZntDl/mHqLIFxCGMAGRXpHdBz+63eStRZblxTqbupswTGIIwBZAx1\nlkByCGMAaTe2zjKoL91/s+ruoM4SmAphDCAl23a3qq29WwpIVcuKVX9XmXa2UGcJzAZhDGDOtu1u\n1bH27vhGTDrW3q1j7d0KSNRZArNAGAOYs7aRIB6ncGGeHr73E1meBnAvfmUFkHYcDQOzwzMGwJx0\nnruk/AUTO6SLQ/na+shKByYC3IvT1ABmJRqL6dUj7+mFRJ3lgvlBDQxFJcWDePuWWocnBNyHMAaQ\ntHMX+vTMi2PrLMOLC/TU3qMKBgN67OEVTo8IuBJhDGBG4+ss//Dmj+tPPms+qrPcvqVW4XBIXV09\nDk8KuBNhDGBa1FkCmUcYA5gSdZZAdhDGACagzhLILsIYwBjHO7qpswSyjDAGIEkaHBrW3jfe0cuH\nzygYCFBnCWQRYQxA7Wcjampu0/sfXNKSqxeqsb5K5dcXOT0W4BuEMeBjQ8NRvXioQ/t+2a7haEyf\nua1E6+4rV37exGYtAJlDGAM+1Xnukpqaj+l0Z4+KQ/l6dG2VasqudnoswJcIY8BnorGYXjvynvYk\n6izvqlmq9XXLtfCqPKdHA3wrqTA2xnxK0hPW2tXjbm+Q9F1JQ5KesdY2pX9EAOnyYaRPO1vG1lne\nXnmt02MBvjdjGBtjviXpq5Iujrs9T9L3Jd0uqVfSQWPMT621v8/EoADmbnyd5S3l12jDmsqP6iwB\nOCuZI+O3JX1B0vPjbq+S9La19oIkGWPelHSvpBfSOiGAlER6B/T8fqsjiTrLDWsqdQ91lkBOmTGM\nrbU/MsaUTbLrY5IujNrukTTjeyHC4VDSw+Uy1pE7vLAGKTPr+NVvO/X0nl/r/MV+1XziGv3FH39S\nS69ZlPbvM4KfRW7xwjq8sIZkpHIB1wVJo/8vhSR1z/RFXvhUF698Oo0X1uGFNUjpX8fYOsuAvrj6\nZj1wZ6mC0WjG/n/xs8gtXliHF9YgJfcLRSphfFzScmNMsaRLip+ifjKFxwOQBvbdbjU1X6mzbKyv\nVgl1lkBOm00YxyTJGPNlSYXW2h3GmL+S9DNJQUk7rbWdGZgRQBJG6iwPHD6jQCCg+lVleog6S8AV\nkgpja227pFWJP+8adXuzpOaMTAYgaWPqLIsL1NhQTZ0l4CKUfgAuNhyNquVQh/YdTNRZ3lqidaup\nswTchjAGXCpeZ9mm052ReJ3lg1WquYk6S8CNCGPAZUbqLF94/ZQGhqK6q2aJ1tdVUGcJuBhhDLjI\n+DrLRuosAU8gjAEXuFJneVKX+4eoswQ8hjAGchx1loD3EcZADms92aVnXzquSO+gKkqKtKm+WuHF\nBU6PBSDNCGMgB01aZ3lHqYJBjoYBLyKMgRxDnSXgP4Qx4KBtu1vV1t4tBaTKGxer9NqQDhw+IwVE\nnSXgI4Qx4JBtu1t1rD3xQWcxqa3jvNo6zuvqUL7+/PN/oPIbqLME/IJfuQGHtLVP/omj0ViMIAZ8\nhjAGcgxvWQL8h9PUQJaN1FkqoMQHk15RHMrX1kdWOjIXAOcQxkAWja+zjMViutQ3JCkexNu31Do8\nIQAnEMZAFkxVZ3n+4oCe2ntUwWBAjz28wukxATiEMAYybLo6y6LC+NFwOBxSV1eP06MCcAhhDGQQ\ndZYAkkEYAxlAnSWA2SCMgTSjzhLAbBHGQJoMDg1r7xvvUGcJYNYIYyAN2s9G1NTcpvc/uKQlxQVq\nrK+mRQtA0ghjIAXD0ahaDnVo38F2DUdj+sytJVq3ulz5efOcHg2AixDGwBx1nrukpuY2ne6MqDiU\nr0cfrFLNTVc7PRYAFyKMgVkaqbPc8/opDQ5FdVfNEn2lrkKLrspzejQALkUYA7Mwvs5yc321bq+8\n1umxALgcYQwkYao6y6LCfKdHA+ABhDEwg+nqLAEgHQhjYBrUWQLIBsIYmAR1lgCyiTAGxqHOEkC2\nEcZAAnWWAJxCGAOizhKAswhj+NrQcFQvHurQvl9SZwnAOYQxfCteZ3lMpzt7qLME4CjCGL5DnSWA\nXEMYw1eoswSQiwhj+MKVOssTutw/TJ0lgJxCGMPzIr0Dem6/1VvUWQLIUYQxPI06SwBuQBjDk6iz\nBOAmhDE853hHt3a2UGcJwD0IY3jGSJ3ly4fPKECdJQAXIYzhCe1nI9qx75g6z/VSZwnAdQhjuNK2\n3a1qa++WAtLHi67Sh5F+6iwBuBZhDNfZtrtVx9q74xsxqet8nwIB6at1Fbr/thJnhwOAOeDFNLhO\n20gQjxKLSS3/t8OBaQAgdYQxXOXchT7FnB4CANKM09RwhdF1lpMpDuVr6yMrszwVAKQHYYycN1md\n5U9+cVrdF/slxYN4+5Zah6cEgLkjjJHTpqqzXLYkpKf2HlUwGNBjD69wekwASAlhjJx0uX9Iu145\nqTd/M3md5bKlIW3fUqtwOKSurh6HpwWA1BDGyDnUWQLwG8IYOYM6SwB+RRgjJ1BnCcDPCGM4amg4\nqhcPdWjfL9upswTgW4QxHNN57pKamo/pdGePikP5evTBKtXcdLXTYwFA1hHGyLpoLKZXj7ynF14/\npcGhqO6qWaL1dRVaeFWe06MBgCMIY2TVuQt9eubFNrV1dKuwIE+b66t1e+W1To8FAI4ijJEVo+ss\nL/cP65bya7RhTaWKCvOdHg0AHEcYI+Mmq7O8Z+V1CgQCTo8GADmBMEZGjamzLF2sTWurFF5c4PRY\nAJBTCGNkxOX+Ie169aTePDqqzvLOUgU5GgaACQhjpB11lgAwO4Qx0mZ0nWUwEKDOEgCSRBgjLSbU\nWTZUq/x66iwBIBmEMVJCnSUApI4wxpxNqLNcW6WaMuosAWC2pg1jY0xQ0j9IWimpX1KjtfbUqP1/\nKWmTpK7ETV+31p7I0KzIEdRZAkB6zXRk/HlJC6y1q4wxn5K0PXHbiFslfc1a25qpAZFbqLMEgPSb\nKYxrJe2XJGvtr4wxt4/bf5ukx40xSyW1WGufyMCMyAHUWQJA5sz0npOPSYqM2h5OnLoesUvS1yXd\nL+luY8zaNM+HHBDpHdDf//i3ampuUzQmbVxTqa3rVhLEAJAmMx0ZRySFRm0HrbXRUdt/Z62NSJIx\npkXSJyW1TPeA4XBout2u4Zd1/Oq3nXp6z691/mK/aj5xjf7ijz+ppdcsytJ0yfHLz8INvLAGiXXk\nEi+sIRkzhfFBSQ2S9hhjPi3p6MgOY0yRpKPGmGpJvYofHe+c6Rt2dfXMfdocEQ6HPL+OKesso9Gc\nWrsffhZu4YU1SKwjl3hhDVJyv1DMFMY/llRnjDmY2N5ojPmypEJr7Q5jzLcl/VzxK61fsdbuT2Vg\n5IbxdZab66t1A3WWAJAx04axtTYm6c/H3Xxi1P5dir9uDA8YX2fZsKpMDdRZAkDGUfoBSePqLK9e\nqMb6KuosASBLCGOfm1BneVuJ1t1HnSUAZBNh7EPbdreqrb1bkpS/YJ76BoapswQABxHGPrNtd6uO\nJYJYkvoGhrVgflB/2lAtc2Oxg5MBgH9xZY7PtI0K4hEDQ1H9933HHJgGACBxZOwbI3WWMacHAQBM\nQBj7QKR3QM/tt3rrRJcCASk2LpGLQ/na+shKZ4YDABDGXtd6skvPvnRckd5BVZQu1qa1VXrih2+p\nu6dfUjyIt2+pdXhKAPA3wtijxtZZBvWl+29W3R2lCgYC2vrISj2196iCwYAee3iF06MCgO8Rxh40\nU53lsqUhbd9S65neVwBwO8LYQ6izBAB3Iow9ov1sRE3NbXr/g0vUWQKAyxDGLkedJQC4H2HsYp3n\nLqmp+ZhOd/ZQZwkALkYYu1A0FtNrR97TntdPaXAoqrtqlmp93XItvCrP6dEAAHNAGLvMh5E+7Wxp\nU1tHtwoL8rS5vlq3V17r9FgAgBQQxi4xUmf5wwMndLl/WLeUX6MNaypVVJjv9GgAgBQRxi4Q6R3Q\n8/utjpzoUv6Cedq4plJ3r7xOgUDA6dEAAGlAGOe4yeosw4sLnB4LAJBGhHGOGltnGdAXV9+sB+6M\n11kCALyFMM5B9t1uNTVPXWcJAPAWwjiHjNRZHjh8RgHqLAHANwjjHDGmzrK4QI0N1dRZAoBPEMYO\nG45G1XKoQ/sOJuosby3RutXUWQKAnxDGDorXWbbpdGckXmf5YJVqbqLOEgD8hjB2wEid5Quvn9LA\nUFR31SzR+roK6iwBwKcI4ywbX2fZSJ0lAPgeYZwlV+osT+py/xB1lgCAjxDGWTC+znLDmkrdQ50l\nACCBMM6wMXWWJUXaVF9NnSUAYAzCOEMmrbO8o1TBIEfDAICxCOMMGF9n2VhfrRLqLAEAUyCM02h0\nnaUCUv2qMj1EnSUAYAaEcZp0nO3RjuZjV+os66tVfgN1lgCAmRHGKaLOEgCQKsI4BdRZAgDSgTCe\nhW27W9XW3i0FpCXFBfow0v9RneVX6iq0iDpLAMAcEMZJ2ra7Vcfau+MbMensh5cVkPTv7yvXmk8v\nc3Q2AIC7cZlvktpGgniUmKRXjryX/WEAAJ5CGCch0jugmNNDAAA8i9PUMxips5xMcShfWx9ZmeWJ\nAABeQxhPYbI6ywOHz6j7Yr+keBBv31Lr8JQAAC8gjCcxVZ1l1bJiPbX3qILBgB57eIXTYwIAPIIw\nHmWmOstlS0PavqVW4XBIXV09Dk8LAPAKwjiBOksAgFN8H8bUWQIAnObrMKbOEgCQC3wZxtFYTK8d\neU8vvH6KOksAgON8F8YfRvq0s6VNbR3dKizIU2N9tW6vvNbpsQAAPuabMI7FYjr0u7P64YGTutw/\npFvKr9GGNZUqKsx3ejQAgM/5IowjvQN6fr/VkRNdyl8wTxvWVOqeldcpEAg4PRoAAN4P45E6y0jv\noCpKirSpvlrhxQVOjwUAwEc8G8aT1Vk+cEepgkGOhgEAucWTYTxVnSUAALnIU2E8us4yEAhMqLME\nACAXeSaMJ9RZNlSr/HrqLAEAuc/1YUydJQDA7VwdxtRZAgC8wJVhPFmd5fq6Ci2kzhIA4EKuC2Pq\nLAEAXuOaMKbOEgDgVa4IY+osAQBelvNhPKbOsnSxNq2tos4SAOApORvGk9ZZ3lmqIEfDAACPyckw\nps4SAOAnORXG1FkCAPwoZ8KYOksAgF85HsbUWQIA/M7RMJ5QZ7m2SjVl1FkCAPxl2jA2xgQl/YOk\nlZL6JTVaa0+N2t8g6buShiQ9Y61tSuabUmcJAMAVMx0Zf17SAmvtKmPMpyRtT9wmY0yepO9Lul1S\nr6SDxpifWmt/P9WDPfSffqKbbyjS/HlB6iwBAEiYKYxrJe2XJGvtr4wxt4/aVyXpbWvtBUkyxrwp\n6V5JL0z1YLGYdPK9C5Kk5SVF+sbn/4A6SwCA7830nqGPSYqM2h5OnLoe2Xdh1L4eSUlf/vzB+T6C\nGAAAzXxkHJEUGrUdtNZGE3++MG5fSFJ3st+4+2L/v4XDoZJk759rwuHQzHdyAS+swwtrkLyxDi+s\nQWIducQLa0jGTGF8UFKDpD3GmE9LOjpq33FJy40xxZIuKX6K+snpHmzf9s/RZQkAwDiBWCw25U5j\nTEBXrqaWpI2SbpNUaK3dYYypl/Q9xU9377TW/mOG5wUAwHOmDWMAAJB5lD4DAOAwwhgAAIcRxgAA\nOIwwBgDAYVn5oIiZOq7dJlEN+oS1drXTs8xWosb0GUnLJOVL+ltr7T5np5o9Y8w8STskVUiKSfoz\na+3vnJ1qbowx10o6Iukz1toTTs8zF8aYt3SlBOgda+0mJ+eZK2PMXyv+ds48SU9ba591eKRZMcb8\niaQNic0CSbdIWmKtjUz5RTkokRlNij+/o5I2W2uts1PNjjFmgeJruFnSoKSt1tpfT3X/bB0Zf9Rx\nLenbindcu5Ix5luKh4Bb68PWS+qy1t4r6bOSnnZ4nrmqlxS11t4t6T9L+q8OzzMniV+O/knx9+q7\nkjHmKkmy1q5O/OfWIL5P0l2Jf6fuk/QJRweaA2vtsyM/B0n/Iuk/ui2IEx6QtCjx/P4bufP5vVlS\nb+Lv02bFD4KmlK0wHtNxrfiHS7jV25K+IMmtBSZ7FH9vuBT/+Q85OMucWWt/Iunric0yzaL9Lcc8\nKekfJXU6PUgKbpG00BjzM2PMq4kzR270gKTfGGP+t6R9kn7q8DxzlvgcgZpkP0kvB12WVJTouiiS\nNODwPHNRrSu5d0LSDcaYj01152yF8XQd165irf2RXBpgkmStvWStvWiMCSkezN9xeqa5stYOG2N+\nIOkpSf/T4XFmzRizQfGzFC8nbnLrL3iXJD1prf13kv5M0g9d+vwOK15qtE6JdTg7Tkoel/RfnB4i\nBQclXaV40+M/Sfpvzo4zJ/+q+Bk8JRosw5IWTXXnbD1hpuu4RpYZY0olvSbpOWvtbqfnSYW1doPi\nryvtMMYUODzObG2UVGeM+bmkP5T0rDFmicMzzcUJJYLLWntS0jlJ1zk60dx8IOlla+1Q4kimzxjz\ncaeHmi1jzGJJFdbaN5yeJQXfknTQWmt05bmxwOGZZusZSRFjzC8Uf6n2hKQPp7pztsL4oKQHpY9+\nQzg6/d1Cz5dSAAABK0lEQVSRKYl/7F+W9C1r7Q8cHmfOjDFfS1xsI8VPaUUT/7mGtfaPrLX3JV7f\n+1dJ/8Fa+/+cnmsONipxHYgx5nrFz4S58bT7m4pfRzGyjkWK/2LhNvdKetXpIVK0SFfOpnYrfkHd\nPOfGmZM7Jb1mrb1H8Y8W7rTW9k9156xcTS3px4ofARxMbG/M0vfNJLf2iD6u+Gsw3zPGjLx2vMZa\n2+fgTHPxgqQfGGPeUPyJ+s3p/qIjo3ZK+h/GmP+T2N7oxjNf1toWY8y9xph/VvxA5RvWWjc+zysk\nufbdKglPKv536heKP7//2lp72eGZZstK+l/GmMcl9Sl+EdeU6KYGAMBhbrzIAgAATyGMAQBwGGEM\nAIDDCGMAABxGGAMA4DDCGAAAhxHGAAA47P8DUnTsx17O4UAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create evenly spaced numbers over the specified interval\n", "x = np.linspace(0, 2, 10)\n", "plt.plot(x, 'o-');\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD7CAYAAABOi672AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtKUlEQVR4nO3dfXRU1d0v8O+ZtyQQeMAYjFTaZSMWyAJFr9UYrwFrQQgRm3qvwiqxxfqURy9a2qVSa3W1q7rAl0uLLp91l4qKVVq9ojY8REV5qYT0WqkIzQtaFAQhGobQEJhM5uXcP+IZzsyc95kzc87M97OWSzKZObN3MvnNnr1/+7cFURRFEBGR43ny3QAiIjKGAZuIyCUYsImIXIIBm4jIJRiwiYhcggGbiMglGLCJiFzCZ/cT9PWdRDxuLNW7oqIcweCAzS1ynmLsdzH2GSjOfhdjnwHr/fZ4BIwdO1Lxe7YH7HhcNBywpfsXo2LsdzH2GSjOfhdjn4Hs95tTIkRELsGATUTkEgzYREQuwYBNROQSti86EhG5WXtHD9Zv24dgfxgVo0vQVF+N2pqqvLSFAZuISEV7Rw+ea+3GUDQOAAj2h/FcazcA5CVoc0qEiEjF+m37EsFaMhSNY/22fXlpDwM2EZGKYH/Y1O12Y8AmIlJRMbrE1O124xw2ERU8qwuHTfXVSXPYABDwedBUX21nc1UxYBORYygFVgAZZWnoLRxqBXPp/8wSIaK8cFKaWmq7UgPrmg2dEDwCojExcVtqloZef/QWDvWyQGprqhzx8wE4h01UVKSgKC2aSQGqvaMnzy1TDqwxEYlgLZEHWyP90Vo4dFoWiB6OsImKiFaAyvco0kzmhXRfI/3xCIBS0TyPkHkWSK4/rRgK2IsWLcKxY8fg8w3f/Te/+Q0uuOAC2xpFRPZwWpqaXMXoEsPtkLI0jPRHrcKpVuVTI1kg+dhUoxuwRVHE/v37sWXLlkTAJiJ3UguK+UpTk1PKyPAKSJrDBpKzNNT64xGAxSs2o2J0CcrLfBgIRdPuIwiAqBK0jWSBqI3un2zpxPpt+/DDeTWo+foY3euYoTuH/cknnwAAFi9ejGuvvRZ/+MMfstoAIsqdpvpqBHzJf/b5TFOTq62pwk1zJiXePCpGl2DxvCn40dzJSbfdNGdSYgSr1B/g9Og52B9GaDAKn1dI+n7A51EN1lJb9Gh9Ggj2h/H4yx9mfW1Ad8jc39+P2tpa/OpXv0IkEkFzczPOPfdc1NXVGXqCiopyUw2qrBxl6v6Fohj7XYx9BvLb72tnjMLoUaVY29qFo30hnDm2DM1zJmPGxRNsfV4jfd668yBe2/4pjvWHUZnSrmtnTEy6393/pz3R/qsvmYC/dX+Jo30hCB4h7ZSXmAiMKvGhtMSX1OdHX/y7als6PjuOGRdPwNadB1V/VqNG+HHiVET1GuFIDK9t/zSp7ZkSRFHrfSbds88+i8OHD+Oee+4xdP9gcMDwMTmVlaPQ23vCTHMKQjH2uxj7DBRnv430OXU+GBgeBctH02r3k6gtLkrWLL8q6eslj2zBUFT5AQGfB3VTq/CXXYchT1LxCsCVF47H7n1Bw/Ptqc+rx+MRVAe6uiPs999/H5FIBLW1tQCG57Q5l03kTk7NwTaavaJ0P4lWsPYIw32X525r3X8oGsfWDw4j9S4xEdjywWHNvshle21AN/KeOHECq1evxh//+EdEIhG8+uqr+PWvf53VRhCR/ezOarDyZiB/jJLU261ms8RF4MmWTjzZ0omK0SUIR2Jp+d2pMj0+1+sRsr42oBuwZ86ciQ8//BDXXXcd4vE4Fi5ciOnTp2e1EURkv0xysFOD8bTqisS0gPR1254exTeDa2ekz1+3d/TgxU17cXIwpvm80ghVev5syFUKoyDo38f0Nc3OYZvFOWx9xdjvYuwzkN9+L16xWfV7WvOsWvPGejwCsGzBRUnpbUavJ81hA7D8/Pk2stSLx35ab+oxGc1hE5E76E1JWM3B1po31hMXgUdf/DvKy3xYcPX5qK2pMnQ9adSuNV3iBicHY0lz55liLRGiAvD8m914sqVTs6aG1RzsbATMgVA00R6960lvNm179O+bLSV+G+YvvpLNuiQcYRNlgR3ZF0av2d7Ro5i5IJ+flq41FI0n0t/02pnNeWN5e/S2oAf7w3h6Q6dmFke2hSP2PVk233QYsIkylO3sC6UFOa1ragXVYH8YS3+3DeFIPJEVIQXCadUVmsHajnnjYH8YtzROwZMtnZr30wvWPq8Ar8feQJstniwO3hmwiTKUzQp4WoFS7Zp6Izi1TIwtHxzGeeeMAZBeoD+TeWs9a9/Ym/E1ojERUY0Ek5nTx6NtzxHVjTG5lM1PCgzYRBqMTEvo5RDLr1E5tgzXXXGuaiDXC5TB/jDufKItqR1mqtylWvf2RxiKxNM+HdiZkRGOaKfyZYtennWuZHPzDAM2kQqjUx16FePkevtCmtMlRgJvajuUqtwZpVTFzo3pc6nM7Ea0U7YLazFLhEiF0dNI9CrGpdI60cToaEx+jdQqd9mcM823mdPHw+vi/lR/bXRWt/4zYBOlaO/owZ1PtBneLm0lYAb7w1i8YjPufKItLfXOKHk7amuq8PCtdViz/CrcPG+K4htIqoDPg4DP3mg4stSb0ePPO2cMnDDe91jctth14Dief7M7a+3gTkcHKMZ+W+1zpvUqjKSyGZle0LqO1o5CJalV6f7j0W2G53lvaZyimuqnl4lxS+MUrHv7I8VpkWyQ+vXHdz7WLEPqBgKAMyyuFXgE4Km7jVfs09rpyBE2uYaVA2TNPsZodoTWdcrLzC0NpU6RNF/zrbSC+2rUplaMfAx/sqUza8H6lsYpuKVxSlLf/V+N3v/9uqlZeQ4zsv25QQRQ4vdgzfKrTC8iZjNLhAGbXMPKCddmH2NmBKV2nSELWRBS9oe0jfm/Tzvb8NRK6rSKJJdz2c+1duOfh44jNHj6DeDkYAxPtnSi69Ng1gOoHjumDQ4HQ/iPR7dgWnWFDVc3hlki5BpWDpA185j2jh7dIvh612nv6LGc+xvsDydKgFp9nLySXi53Cg5F46qZGRvbD2B8RRkOB0O5a5BNwhERbXt6EPAJecnxZsAm17BSvEgr5e75N7sTJUJHlnoRjsQtBTl5XnQ2t3JbEewPOyalTa4QgrVkKBpHiV9AwOfJeQokAzY5jtoioVK+sV6eq1qOcjzl5BC9usxagv1hPLOxK/FvKnzDW+I5wqYCYTYzQ7pveZkPocFo4hw9pc0qZrJEpO/ZXUwoGhPxZEsnRpZ6DQX/gM8Dv0/I6I3CDoIAzdPEyTzudCRHe/7N7qTRq1bhotQ0OrWdd1INDek/M2prqkzPC8tJf3BGRs+hcBxeAVDaFZ1aJQ9ARu2yA4N1dnGnIzmaXqnPVGbS6DKRySgn2B82nBkQF0WUlfoUny8uAiV+b+JTQW1NFWZOH2+5XWS/TDJtRo3wp536nimOsCmr9Ep9GrlNidnc5lSZ1NsQYK42xUAoihK/F+VlvrRPDOFIDOve/ihpWsfrAWJO2M5HSaRj08yWmpVO17l2xsSsb4hjwKas0grASqNOo5XmMt2QK41yrOzss/LMWn0aCEUTbeAipXWTvzEGXQeO23Jt+Wu1tqYK/zx0XPdNO3XHqh0YsCmrtAKw0lzetOoKQ6NX6Wy81AVHwPgipDQN0d7Rk/MTTSj77lxwkekyAEbJp8DaO3qwbZf2azRbpwzpYcAmw4xkfqhNPcycPl5xwbFtj/q2crmRpd60UqdPbehMWiRLXdxUa2+mi5BuFvAJCPi9iRF+vjaAZEo6gzGTWuBadu8LAjg9HaL15q5Wz8UOXHQkQ4zW5EitXFcxugS3NE7BotmT0q5p5lQTQRDS7qs0SyItbuodSpvNVCtAfXFqZKk3689llVcAbpozGQuuPj/RplEjAnltk9W1iWhURHtHT1YzMOSk142R12guN0txhE2GmDkGSy31LvXkFTMjIzPzzmq7/eSZKoND2a1QpzQCC/g8WPjdb6G2psq2j+5mLJ43BQDSPqnkS8DnwYKrz7f0aScmDr8mH761Dk+1dKquMxg5P1KJmVTOXP4MOcImQ6zU8ZBLHaH39hnfqlwxuiTjLBFJsD+MNRs6bd+wUl7mQ93U4a3qi1dszvuhAiNLvYmt8044Uaa8zJdYoLP6u5VeS1oTOuu37dMsPKVU51qeO23k01Euf7ccYZMhenU8tOa3M1nkC/g8mFZdgb/oLPqYkYuj/kRxuEiQFBxztcDp8wqIxcSkIOYVgIXf/RYA7TdYs4WvlIws9UIQBM1PRKlzvlYzgOTTbloDCkGAalQvK/Hg25PPStSUkS9max1iIZfLxWvDAXvlypXo6+vDihUr7GwPOZRWHQ+tsw8B6C7aqJGf4O2Q81QNy9eWc1EUEfALX9W6GA6g0rSMVt3wTIN1ahBWC3YeYXh35/pt+xJv6lZ+VvJRsF6OvSgOL1JGomJaH08OxtC2pycpHc9s3nUu1ygMTYm0t7fj1Vdftbst5GBKi4nSi1xrftvqR/CK0SV4+NY61NZUMVfZhFgciWANAIPh08HwxU17VR+XSbBWygDSO+dSKgn7/JvdpgOe/LUHpL82lYQjIp66W/nwgdRduGZes9neeq5Hd4R9/PhxrFq1CkuWLEF3d/bOJiPn0UvbU1tMtDq/rVZzI/WxSjsGyZiYODyi1VqYs8ojADfPU05pkxfqOvbVtITSm8KWDw5j5vTxSdNHeoL94aQDiKX/19ZU4fbf/0XxtSLNkxt5req9blNrwuQqpQ8wELDvu+8+LFu2DEeOHLH0BGpnk6mprBxl6XncLpN+b915EGtbu3C0L4Qzx5ahec5kzLh4gulrrPmvLsS++qsK9oex5r+68PnRk/hb95eq19668yA8HsHwuZ1yP11wER5/eRfCEeU/1JtXbEb5CD9OOixYu7GinR3NXbbgorTXWepr8YfzagAAj774d9Xr/GN/H5b+zwuxtrXL8GJ0sD+MtW/sxehRpUltEFQOyx0IRdHx2XFUji1TfI7KsWWJv8FRI/yKZ1COGuHHv183NdE/j9eD0aNKNf92sx3PNAP2yy+/jLPPPhu1tbVYv369pSfgIbz6Mul36nxbb18Ij720C/0nBjXf+VNH0wOhoUSwlsTiIja2H0h8nXrtxKYCC8FaEICar4+B3+dRDdgi4MjDW90WrO3y7IaOpNeZ0mvxd+v+DkEnjaK3L4Sar4/Byp/UJm5LrfioJByJ4dkNHaj5+pjEbVqvl8de2oW6qVVoOxFOW4u57opzE3+D8bjy6zE8FMVjL+0y/Ldm9e/a8iG8GzduRFtbG+bPn4/Vq1dj8+bNePDBB003gOxj5ZxDpU0w8nlPLfJrZ5IiJorD7SiGqQ6ludxCkLoZ6cVNe9NeDzFxuFa4FqV55UWzJ6Ud6qvWBr1rSYaicezeF1Rdi5GoLYIORUXTf2vZpvnTeOaZZxL/Xr9+Pd577z3cc889tjeKjLMyf5xpLq480Gfiudbugp+fLvF74fel79IsFEPReGIxM9Nsj1TSgrbW6yM1QOtljAT7w7o11c1ud+fGGTJMbUShNdLIRm1p6cDaTAxF48NpaAU6AhUEIBqN5eQNySsMp9bd0jgl51vhTw7GNDNQ1HiE0yNUtZRDrdeqUrCXMkbUXptGfjZKGS4Bn0d1tO+4tD4AaGpqYg62A6m9uLRSjYy+wARheCNG6rWnVVdYzq1OdXIwhrqpuVtlz5XyMh9GlHgVs2DKy5QPOMjE4q+yNWprqvDwrXW4pXEKAr7M3lG9wunsCr3dplZG1/IUP6W6NNLzKvEIUC1lWltThZvnTTH9dyF/vNK0yYKrz7d8zWzhTkcXSF0gnFZdkbQzq25qVdpOLaXKePJzE7VS6oDTRdiB9PKlVqZU1DZmeARzhwNobFpzlNV3XKlaP2QgFNX8vhXy3/fpxT/rPyml8rUjS70Zt1ONWl0atQ1benWnrZz/mfp4tftavWY2MGA7nNIuwtTzEqWdWsDwiyl1J5nSuYk+r4CRfo/qyGggFMW6tz/CgqvPx8O31iV9z0oxHbXRuNlRuhuCtTRlpPV9QH93YcDnMfTGmDoK1XtDDfg8CPg9qlM10q7F1NeN1ii6vMyHoUg8LbBqPU8qpemPTAKvlfM/83FNMxiwHc7IaFZa+InIVrHl28OVrhGNifi3kcO/fq2g/VxrN/556HhiBG/nKMvpjJ6ILn0KUSMVx6+/cLzqpwv5pxmz87ha9xe+mjf2a0yXSCNdo5+kpKp70mNTa3KsfWMvwhH9n5va9Ee+g6STMGA7nNEFQqVAMhSNax6JZeTaQ9F4UlDJV40MidJILhNGa2hIAcjopwutn61UHH/R7EnoOXYq7ZgrKQhLgUqrCJHS1IBWloOUQ671ewz2h9He0aN73JvSiFcpsI4eVYpnN3QkTeml7mzM9VywWxXm8nwByXRxSuvjaLZKluaSKIqom1qVlZKWAZ8H9ReOh1fnWvIAasT6bft0s3SkKZM7F1yUlNmhlBfcVF+t2MbUBWH5/TP1XGu36qcpqc7LmuVXJeq9qGnv6MHa1q6k4L5o9iTdXGhS5r6/2CKTyWnfepy25duIk4MxbPngMEpkFemsqptahfPOGYN3dx9JW4GVrp86gjSSoxvsD+sWzn9mYxde3LQXJwdjhs6iVPqkFI2JqgdIWDlsWG4oGkfA70ubRzczEtaq4shpDms4wnY4pRSjbHHDAp6aTIM1ALTt6cG6tz9S3IkXjoi4pXFK2ghSfjirmorRJaitqcLM6eNV7xONiYlpCa20NonZaS2lFDQlWmsSA6FoRiNhK7twSRtH2C4gP+1b68U+stSL0oAvsTiY7/lmpxuKas+Fr3v7o8QimtG5bvkIdNHsSTjvnDGG5r2lhWO1YKh3gESq1OyKkaVehCPxpDcn6QgztYVN6Y3H6kg401OKKB0DtkvoFVWXnx8IALf//i+5bF5BGghFEyNbI8HaIwxPs6SWpNXL9JCcHIyhvaNHMUBqHSChJjXYapXPNXttI8y+yZA+Buwcev7NbmzbdRhxcfiPu/7C8YqniSvRSrFSmgMt5PocVuRiw01cHJ5mOe+cMWmLhkazS5TmpIHMN4JI17Dr2kqsvMmQNgbsHEktFxkXT+/w+9kPLgGgPAICoDtCS93YQskCPs9wWU0TRfKtUtqxV1tTlZV0QDsX6uzaZAIAr23/FL19obzsDCw0DNg5sk3lENltuw7jZz8YDtZrNnQmkhWC/WE81dIJr1fQLE/pEYbfDFK3prt5Dlv69LHjH0cyXlyUB4nzzhlj+TBgM9SmAYxMi6hNF+idBuRUtTVVuHbGxKKsc28HZonkiNbW7K07D+Kpls602h4i9GsJSyN1ecnTZzZ24duTz8pCq/MjLg4v2P3nz2filsYplndX+rxC2qYOpaJA2aYUdNXOOJST2ptKqX65XlYJFSaOsB1A6/gkK6IxEX/r/tK1o+zyMl9id1/F6BIs/O63AEB1dFwxugThSHoZU6U85dT5Wi3yrBspS8RI/Q+loFtbU4V/HjquWehKVLmwVnqcG0bZlD0M2BY5/SPqQCiqu3lDi0cQEM/TWVjy7AxpNHnTnEm4ed4U1UUstX6qFRSSflda277lWTcSrWwdvdeBtCVdTUxUXnRkehxJGLAt0NvBpcTsKRbZ8GRLp6XsiBK/F9Goc0bm0mhSWlxVeqPUyiWWKL3Jqu0knTl9fNYzKoz8/s3MfzM9rvgwYFtg5SNqNraYG928IWdljByJxmxfmJMzss1cClhq2Qx6KWRqb7I3zRmua2EmAFvNqDDypq02/830OAIYsC2x8hFV+gPPJEshV0E0V8/jEYCb5xmbttEbTeqNfLXeZPUKGGVLU321ZqlRrflvIL+F88kZGLAtsPoR1Uw+rttIp4AA6bvmlJT4vWi+ZniOWO9NzMzRTmpBzAnzwLU1VUmlRsvLfBBF0XABKAZoYsC2wOpH1EJNw1IKNqk1OFKD0w/n1aDm62MAaI/oszWadMo88IyLJyT6TWQWA7YFUoqWfJt5ag0JJYVYpUyqjQykL+pJR00pqawcldhMoRVMs7WLk/PAVAi4ccaC9o4etO3pSYwMpRoSeiNot6RhlZf5DG8ukfqktLnjyZZOLF6xGXc+0ab5s7Fy8rtZaidhc5qB3KRoR9iZ5FGbyRKRP4+VLI9cUzqfzwit4lR6aY9qi2oAkjbQZDo1wnlgcruiDNhW8qjljC5gpT6P04M1kDy1I/1/8YrNuo/TC+zyN7T2jh68tr09rSBQainQTH5HRIWoKKdEMj0JQ22hSrq9vaMHdz7RhidbOhVHnYLB8wi9HiHn5y7q7cZTY2TxTjrL8LnWbvT2hRK3KdXF4GklROkMRYPf//73ePPNNyEIAq6//nr86Ec/srtdtso0xUttAWtadQWW/m6bbv0OUQS8QtoxgmlicTHnda2VfgYBn4ChqHpj2zt6DG0MqhhdohuI9aZh3LIOQGQH3RH2e++9h7/+9a/485//jFdeeQXPP/88Pvnkk1y0zTZ6I2QjAv7TP7qRpd5EvWWjxZb0grUkG6eDm6H0Mwj4tavlSVMd8kW9tGt8tYio9WYpX7Q00z6iYqEbsL/97W9j7dq18Pl8CAaDiMViGDFiRC7aZptMshKkj/TykW8kOlwdz47i+HERlsuBjiz1wuc1F/HDkVja9ITeKF++bfzhW+uwZvlVuKVximJGhlqpVI8A3Z8f0/Co2BmaEvH7/Vi9ejXWrFmDa665Bmed5d5ay4D2Vl+97BG1j/R2nWQi5Xj/rftL09MjUlnSdW9/ZPixA6Fo2uKeXg0MpVGvUkZGe0cPwpH0n5OR6SFuxyYCBFE0XkMzFAphyZIlmDt3Lm644QY725UXW3cexOMvf5hU66HE78X/+h8XYMbFEwAA1/78ddvPBkzl9QgQBP3DDFJVji3DmntnAQAW/mojTpyKGH7sqBF+lJb4cLQvhPIRfoTCUcXnT/35aFn827cSi41Kz6X0PXkfiIqd7gh73759GBoawuTJk1FWVoZZs2Zh7969hp8gGBxA3GA+m3z3Wz48u6EjrTBPOBLDsxs6EtuJz8hDmdSYxXzA3r5Q4ud543cm4pmNXYaD/olTkUSAP3EqAq8wvKFmIBRN5JNLo96ar48x9HtTCsjS9W/8zkTFhdzrrji3oI6XyvdrPB+Ksc+A9X57PAIqKsoVv6cbsA8dOoTVq1dj3bp1AIB33nkH3//+9003wg2MZI9ko0xqrsinKqSpBPn0yMhSL6IxqFaPk4uJw6Pp1XdcmVF71LagsyIdkT7dgF1fX4/du3fjuuuug9frxaxZs9DQ0JCLtuWc2k5EeaaGmSOm8i11gU5pXnnp77YhbHCmJNP+6tXz4E5EIm2GFh2XLl2KpUuX2t2WvNM6KHfxis1pu/K0jpfKt/Iyn6HgZ+bMx0xT6uRvdsf6wziDo2giU4pya7oavWyI1O3RTg3W8nogeoweXZatlDrpza5Y5zWJMlGUW9PVNNVXQy9reSgax5Mtnbh5pX59jVxSynmWtshrVcxTy0mfOX08K9sROQxH2EiuqGdUng4UV+QRkFblLnWLvFrxJC72EblHUQVspU0xgLEjrZxMmnsP9ofxzMYuiHFRcSOKWglYLvYRuUPRBOz2jh6s2dCZCGTB/jDWbOhEWanP1cE6lV6edS7m3TOpNU5E6opmDvvFTXvTRp0xUb9OhlECkKiTUTG6BDOnj8/KdbPN7uJJSifPKJVPJSLzimaEbSZ9zQoRw0Wg5OcYbvngsKlreAVA8AiGdyOaPcEmF8WTzJzGQ0TmFM0IOxdSC+zrjWZL/F6MLPVC+Oq+V144HiV+Y7+SgM+D+gvHp2V4+LwClAr0lZf5cpLpkWmtcSJSVzQjbKkOht3MbGMPR2IQRQ9+tvAi9J8YNLz46RGQCL7nnTNGcSE1X3PIWtvPiSgzRROwF1x9Pp7e0IV4DvLxpPlarYNpJUPRONa2diEeM1aiNeDzJI2U1TI88jX9oLf9nIisK5qADQBCjgqjPrWh01Se9tG+kGbLpFGrGzIumNdNZJ+iCdjrt+0zfCxXpswO4s8cW4Z4LK46lfDwrXWJr6Xdi04OhszrJrJH0Sw6OnXRK+DzoHnOZMUt4gAwrboi8W+mzBEVt6IJ2E5c9BIEwO8T8L9f/DvWb9uH6q+NTrtP254ezTnx1MwUIipcRROw1Uaw+SSKw/nhIoZHy10HjqfdRx6QmTJHVNycFcFsVFtThZvmTLJ9pG3lpHI9UkBWa7sTPz0QUfYV9KKjUk0LaQFv8Yrsl0cVBOCxn9anPe+06gq07emxXLNECshMmSMqbgUbsKUFOim4ycuL2kYcfl6lLInzzhmDFzftTWyRF4bvriv1CC2AKXNExaqgArZ8ZKsUEIeicby4aS9KA/Z0WwQ0a2ZEomLSfVMFfB7UTa3C7n1B1YDMlDmi4lUwATt1RK02ej05GLO1EJTaAqDarkePMLz4yPMNiUhPwQRsI9vAc0FtAVAtkMdFoOXR+TzfkIh0FUyWiBNS27QWAJnhQUSZKpiAnY3AN7LUa/rgAfmhBVrlS9UOu2WGBxEZVRBTIu0dPQhHMpuXXrP8qsS/d/zjCMIRYwVBSgM+PPbTet37McODiDLl+oCduthohSdln0vzNZMNV9yTT8XonWXIDA8iyoTrA3Y2FhvrL0yfBhlR4jWUTSJNxWjlfTNIE1E2GJrDfvzxx9HQ0ICGhgY89NBDdrfJlEwXGwM+AYtmT0p8LQVeI8FaPgfNwkxEZDfdgL1jxw5s374dr776Kl577TV0dHRg06ZNuWibIZkuNg5FRdz5RJupU2Ik8kVGFmYiIrvpBuzKykosX74cgUAAfr8f1dXVOHzY3GngdpLXi7ZKXlfaTICVT3UwbY+I7KY7hz1x4sTEv/fv34/W1lasW7fO1kYZ1d7Rg7Y96cX7x1eU4XAwZOpa0rZ1jzC8mUXPyFJv0skvSgWemLZHRNkkiKKxA60+/vhj/OQnP8HSpUvxve99z+52GbL4t2+ht89cYM4Gr0eAIABR2ZljJX4vvvPfzsHfur/E0b4QzhxbhuY5kzHj4gk5bx8RFSZDWSI7d+7E7bffjnvuuQcNDQ2mniAYHEDcyJAVQGXlKFNbtHMRrD3CcBaJvCBTOBLDQCiadL9wJIb/19GTdP4iAEP9MdvvQlCMfQaKs9/F2GfAer89HgEVFeWK39MN2EeOHMFtt92GVatWoba21vST20k6TdxOcRFJWSSAei1tLjASkZ10Fx2ffvpphMNhrFixAvPnz8f8+fMdM4fdVF+NbBzuUjG6BOVlyu9dSouGXGAkonzQHWHfe++9uPfee3PRFtNqa6qw7u2P0qYnzHr41jrFHZNqi4Y8+YWI8sGVOx3lW8AzJY2KzdT6YF0QIsoH1wXsbNQOkQv2h3HnE22JgGs06LIuCBHlmuvKq9pxUIF84wwRkVO5LmDblYnBuh9E5HSuC9h2ZmIwLY+InMx1ATsbtUPUMC2PiJzMdQF7976gLddlWh4ROZ2rArbZanpGeYTTc9hceCQip3JNwJbS+cxS28EoJ5U6YbYIETmZawK2lXQ+jwCsvuNK3NI4JXG6uR5mixCRU7kmYFuZComL6kd+aY28mS1CRE7kmoBtNYPjudYuxZF5id/LIk5E5CquCdhW0/mGosq1uIP9YTTVVyPgS/4RMFuEiJzKNbVEsp3OVzG6hEWciMhVXBOwsz2vLI2iWcSJiNzCNVMiRrM8jCgv8zFIE5HruCJgt3f04FQ4pn9HBR4h+UiagM+DBVefn41mERHllCsC9vpt+2DsbPfTPAIwc/p43DxvciLro2J0CW6aM4mjayJyJVfMYZudvx5Z6sXC734rEZgZoImoELhihG1ke7ncycEYt5gTUcFxfMBu7+hBaND8IbvcYk5EhcbxAXv9tn2ImZy/lnCLOREVEscH7EyCLreYE1EhcXzAthp0fV6BW8yJqKA4PmAr1fswosTvYXYIERUUx6f1pdb7MCq1nCoRkdsZGroODAxg3rx5OHTokN3tUVRbU4WHb60z9RjOXxNRodEN2B9++CEWLFiA/fv356A52owGYZZIJaJCpDsl8tJLL+H+++/HXXfdlYv2JGnv6EkqfTqtugJbPjis+RiWSCWiQqUbsB944IFctCPN8292JwXnYH8YbXt6MPkbY9B14HjSfQM+D2uEEFHBs33RsaKi3NT9KytH4T//7y7FkfRQNI5DvSfx84UXYW1rF472hXDm2DI0z5mMGRdPyFaT86KyclS+m5BzxdhnoDj7XYx9BrLfb9sDdjA4gHjc2FbFyspR+PPWj7Gx/YDqfU6ciqD/xCBW/qQ26fbe3hMZtTOfKitHubr9VhRjn4Hi7Hcx9hmw3m+PR1Ad6DouD9tI/Q/WCCGiYuS4PGwjudbB/jAWr9jMBUYiKiqGA/bmzZvtbEdCxegSwxtkgv1hPNfaDYA1r4mo8DluSqSpvho+r6B/x6+wjCoRFQvHBezamiqU+M01i2VUiagYOC5gA+brgHAbOhEVA0cGbDMBmNvQiahYODJgGw3A5WU+7nAkoqLhuLQ+YHge+5+HjmvWDZk5fTwWzZ6Uw1YREeWXI0fYALBo9iTV09LLy3wM1kRUdBwbsAFgwdXnK542c8mkcXloDRFRfjk6YNfWVKFuavr8dNueHrR39OShRURE+ePogA0Au/cF027jZhkiKkaOD9hqm2K4WYaIio3jA7ZaTjY3yxBRsXF8wG6qr05beORmGSIqRo7Mw5aTNsXIz3ZkSVUiKkaOD9jAcNBmgCaiYuf4KREiIhrmyBF2e0cPp0CIiFI4LmC3d/TgudZuDEXjAHiqDBGRxHFTIuu37UsEawk3yhAROTBgc6MMEZEyxwVstQ0xJX5vjltCROQsjgvYTfXV8Ajph/CGIzE8/2Z3HlpEROQMjgvYtTVViIui4ve27VI/0ICIqNA5LmBriSvHcSKiouDIgO1JnxHRvJ2IqBg4MmDXXzje1O1ERMXAUMBuaWnB3LlzMWvWLLzwwgt2twmLZk/CzOnjEyNqj8BDd4mIdHc6fvHFF1i1ahXWr1+PQCCAG2+8EZdeeinOO+88Wxu2aPYkBmgiIhndEfaOHTtw2WWXYcyYMRgxYgRmz56NN954IxdtIyIiGd2A/eWXX6KysjLx9bhx4/DFF1/Y2igiIkqnOyUSj8chyDayiKKY9LWeiopyUw3q+Ow41rZ24WhfCGeOLUPznMmYcfEEU9dwo8rKUfluQs4VY5+B4ux3MfYZyH6/dQN2VVUV3n///cTXvb29GDdunOEnCAYHEDeYQN3x2XE89tKuRPGn3r4QHntpF/pPDBZ0pb7KylHo7T2R72bkVDH2GSjOfhdjnwHr/fZ4BNWBru6UyOWXX4729nYcO3YMoVAIb731Fq688krTjTBibWsXK/UREanQHWGfddZZWLZsGZqbmxGJRHD99ddj2rRptjTmaF9I8XZW6iMiMniAQWNjIxobG+1uC84cW4ZehaCtVsGPiKiYOGqnY/OcyQj4kpsU8HnQVF+dpxYRETmHo44Im3HxBPSfGOR5jkREChwVsIHh8qoM0ERE6Rw1JUJEROocN8Ju7+jhlAgRkQJHBeytOw/iudbuRC52sD+M51qHjwVj0CaiYueoKRFunCEiUueogM2NM0RE6hwVsM8cW6Z4OzfOEBE5LGBz4wwRkTpHLTpy4wwRkTpHBWyAG2eIiNQ4akqEiIjUMWATEbkEAzYRkUswYBMRuYTti44ej/EDe63cv1AUY7+Lsc9Acfa7GPsMWOu31mMEURSNnZBLRER5xSkRIiKXYMAmInIJBmwiIpdgwCYicgkGbCIil2DAJiJyCQZsIiKXYMAmInIJBmwiIpdwRMBuaWnB3LlzMWvWLLzwwgv5bo6tHn/8cTQ0NKChoQEPPfQQAGDHjh1obGzErFmzsGrVqjy30D4rV67E8uXLARRHnzdv3oympibMmTMHv/3tbwEUR79ff/31xGt85cqVAAq33wMDA5g3bx4OHToEQL2fXV1daGpqwuzZs/HLX/4S0WjU2hOKedbT0yPOnDlT7OvrE0+ePCk2NjaKH3/8cb6bZYu2tjbxhhtuEMPhsDg0NCQ2NzeLLS0tYn19vfjZZ5+JkUhEXLx4sbh169Z8NzXrduzYIV566aXi3XffLYZCoYLv82effSZeccUV4pEjR8ShoSFxwYIF4tatWwu+36dOnRIvueQSMRgMipFIRLz++uvFd955pyD7vWvXLnHevHliTU2NePDgQc3XdUNDg/jBBx+IoiiKv/jFL8QXXnjB0nPmfYS9Y8cOXHbZZRgzZgxGjBiB2bNn44033sh3s2xRWVmJ5cuXIxAIwO/3o7q6Gvv378c3vvENTJgwAT6fD42NjQXX/+PHj2PVqlVYsmQJAGD37t0F3+dNmzZh7ty5qKqqgt/vx6pVq1BWVlbw/Y7FYojH4wiFQohGo4hGoygvLy/Ifr/00ku4//77MW7cOADqr+vPP/8cg4ODuPDCCwEATU1Nlvuf9yPCvvzyS1RWVia+HjduHHbv3p3HFtln4sSJiX/v378fra2t+MEPfpDW/y+++CIfzbPNfffdh2XLluHIkSMAlH/nhdbnAwcOwO/3Y8mSJThy5AhmzJiBiRMnFny/y8vLcccdd2DOnDkoKyvDJZdcUrC/7wceeCDpa7V+pt5eWVlpuf95H2HH43EIwulygqIoJn1diD7++GMsXrwYd911FyZMmFDQ/X/55Zdx9tlno7a2NnFbMfzOY7EY2tvb8eCDD+JPf/oTdu/ejYMHDxZ8v7u7u/HKK69gy5YtePfdd+HxeLB///6C7zeg/rrO5us97yPsqqoqvP/++4mve3t7Ex8xCtHOnTtx++2345577kFDQwPee+899Pb2Jr5faP3fuHEjent7MX/+fPzrX//CqVOn8Pnnn8Pr9SbuU2h9BoAzzzwTtbW1OOOMMwAAV199Nd54442C7/f27dtRW1uLiooKAMMf/59++umC7zcwHMuU/pZTbz969Kjl/ud9hH355Zejvb0dx44dQygUwltvvYUrr7wy382yxZEjR3DbbbfhkUceQUNDAwDgggsuwKeffooDBw4gFothw4YNBdX/Z555Bhs2bMDrr7+O22+/HVdddRWeeuqpgu4zAMycORPbt29Hf38/YrEY3n33XVxzzTUF3+9JkyZhx44dOHXqFERRxObNmwv+NS5R6+fXvvY1lJSUYOfOnQCGs2is9j/vI+yzzjoLy5YtQ3NzMyKRCK6//npMmzYt382yxdNPP41wOIwVK1YkbrvxxhuxYsUKLF26FOFwGPX19bjmmmvy2Er7lZSUFHyfL7jgAvz4xz/GwoULEYlEUFdXhwULFuCb3/xmQff7iiuuQGdnJ5qamuD3+zF16lQsXboUdXV1Bd1vQPt1/cgjj+Dee+/FwMAAampq0NzcbOk5eOIMEZFL5H1KhIiIjGHAJiJyCQZsIiKXYMAmInIJBmwiIpdgwCYicgkGbCIil2DAJiJyif8PUrZbQegYSfIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create sample data, add some noise\n", "x = np.random.uniform(1, 100, 1000)\n", "y = np.log(x) + np.random.normal(0, .3, 1000)\n", "\n", "plt.scatter(x, y)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([83.71854922, 56.42008614, 49.98694964, 93.27834525, 30.27524716,\n", " 41.76569611, 68.77139894, 53.85135531, 59.70938725, 47.94039486,\n", " 92.2794264 , 36.65789096, 34.12233513, 42.93989704, 96.31092964,\n", " 66.42623987, 29.29202337, 77.42591982, 23.93583307, 46.1117102 ,\n", " 83.87098271, 31.48546596, 37.03181147, 34.55065443, 82.69943861,\n", " 48.04544156, 55.28137272, 20.41569089, 34.44386826, 31.33208191,\n", " 68.82291735, 16.49416034, 67.52775054, 59.26870595, 34.59416856,\n", " 46.22618212, 43.02653129, 13.29699634, 85.87035581, 49.10256099,\n", " 53.80913102, 55.4370286 , 97.59276738, 76.54251692, 12.44899516,\n", " 24.13297416, 85.94900525, 65.19726131, 92.77112099, 61.05600087,\n", " 51.97623268, 74.50004466, 12.96078586, 8.45321199, 93.23475918,\n", " 20.50258396, 20.82425681, 63.75744397, 85.98146324, 6.58818749,\n", " 34.13121031, 8.77033903, 57.16966461, 55.99761995, 49.8286924 ,\n", " 78.83044349, 39.80510984, 30.84804662, 82.28398022, 9.93416381,\n", " 96.76791686, 21.62560876, 21.44950404, 44.30021138, 63.63334457,\n", " 83.91351217, 76.57204104, 2.85709746, 54.09131354, 98.20915521,\n", " 95.45205648, 52.47789366, 63.49178726, 85.79772374, 61.87730851,\n", " 63.6599729 , 78.42832639, 61.15016663, 9.19537288, 62.64767869,\n", " 9.9441762 , 30.96488801, 7.00401788, 25.45784566, 22.92861064,\n", " 78.9518552 , 96.70412501, 41.92897161, 88.27740138, 19.82953716,\n", " 19.99840143, 24.62332795, 92.57234839, 4.3085906 , 8.39897054,\n", " 86.61940807, 34.73652668, 43.93647878, 87.84859818, 12.75033582,\n", " 14.73741943, 98.10399493, 31.25375293, 64.34812438, 19.68005629,\n", " 25.67171446, 60.39612831, 89.35139282, 96.57952059, 84.05577647,\n", " 56.69683168, 53.74545209, 48.56017275, 18.68125305, 3.72073321,\n", " 93.53363915, 12.02587833, 89.5376834 , 46.04924518, 77.99515893,\n", " 46.32252998, 81.40921193, 27.34338734, 37.47268845, 75.78202532,\n", " 38.29284779, 42.6343433 , 96.01020265, 97.81660871, 93.35310544,\n", " 20.24738001, 98.46825771, 13.712137 , 33.77227359, 29.40031081,\n", " 54.28727788, 48.83005544, 5.6674515 , 21.1620685 , 51.63380767,\n", " 17.21803125, 8.61133232, 91.29855571, 87.72501975, 25.12385243,\n", " 69.13211569, 14.47254943, 7.38473232, 44.51243476, 38.34570006,\n", " 72.81345911, 38.12407287, 6.4085569 , 69.84395616, 6.73123685,\n", " 69.69176786, 34.52184721, 64.85272141, 88.58436437, 97.85669547,\n", " 50.55263643, 90.23285264, 34.54628467, 48.49646617, 89.84304147,\n", " 70.32288427, 54.40838621, 5.36572988, 16.77505735, 89.75713153,\n", " 39.20205915, 70.09879834, 72.82545558, 80.63631681, 61.18949255,\n", " 96.12832008, 89.86338564, 5.78167235, 62.66001616, 45.24619169,\n", " 68.22110483, 78.50223742, 88.518058 , 45.07746332, 5.52013397,\n", " 11.82882415, 60.56869955, 87.32315816, 72.04393536, 90.0505615 ,\n", " 73.76413058, 21.18795344, 31.72529168, 86.39558819, 65.63549891,\n", " 32.21931223, 16.74065236, 59.59553079, 7.52972462, 93.18470182,\n", " 52.96095658, 59.30359505, 64.62047666, 26.26466469, 4.81077116,\n", " 88.31656888, 91.61068173, 4.73609492, 81.33937848, 4.1011709 ,\n", " 2.57936691, 83.59191756, 17.76511103, 35.260859 , 2.12451695,\n", " 92.95291768, 44.69776305, 75.06399396, 49.27140805, 70.89682392,\n", " 54.43181351, 71.29745173, 2.58864544, 75.63705519, 57.98533294,\n", " 54.09305538, 83.30654764, 76.1120146 , 14.6803717 , 49.61729746,\n", " 76.32994462, 94.26525748, 91.62397767, 83.37590949, 4.56719842,\n", " 87.78640149, 85.21532691, 55.27810805, 21.31038537, 20.02479967,\n", " 82.57333297, 43.6731699 , 48.80470649, 94.82564441, 69.38454334,\n", " 69.24588824, 23.43682139, 24.69793876, 94.56932991, 4.75665761,\n", " 31.26874213, 61.27296706, 38.84203184, 52.07511526, 16.74501083,\n", " 90.10773435, 73.63029533, 45.68134773, 74.21902068, 52.57994729,\n", " 36.76262087, 23.99745014, 5.97852962, 26.05342092, 7.63304941,\n", " 36.74485501, 25.85072155, 24.28879386, 46.38647005, 38.54809101,\n", " 20.08363303, 28.89598316, 65.28138835, 65.89866509, 56.21697962,\n", " 95.98243925, 39.6996565 , 9.44647706, 12.53545148, 76.65801574,\n", " 64.16900178, 29.6652737 , 50.68757655, 85.06007367, 66.67179532,\n", " 73.51785038, 82.33531599, 76.30448981, 18.02927199, 34.79390567,\n", " 43.35736492, 42.09896227, 24.3227206 , 17.06147181, 22.26837447,\n", " 11.39338226, 4.0590102 , 41.72233178, 74.59919539, 70.28058278,\n", " 46.74347735, 50.74540797, 75.3868119 , 81.91549973, 68.66401867,\n", " 29.46735335, 13.16022997, 37.81641541, 95.18328584, 99.31281745,\n", " 93.60594966, 37.78951538, 9.58815953, 5.43466928, 29.25084117,\n", " 61.20781222, 73.65145942, 80.9411392 , 44.84073946, 39.15571455,\n", " 35.38719918, 33.18527091, 93.57087102, 82.95009024, 23.13348947,\n", " 99.38503438, 46.41191059, 19.78431723, 92.48274749, 94.35508113,\n", " 82.55464173, 24.49033533, 13.04648305, 5.33523461, 65.29334281,\n", " 21.76461102, 53.18091392, 37.88104412, 7.66864866, 86.43601426,\n", " 42.81323599, 73.73847828, 28.18782878, 9.47024692, 91.33054247,\n", " 19.13443638, 44.66581638, 64.54085165, 18.7005718 , 97.43973028,\n", " 27.37321214, 46.5371998 , 70.13804771, 94.12044806, 9.59499349,\n", " 91.77590893, 23.85416154, 24.81854893, 10.16994817, 61.65265823,\n", " 30.80094459, 99.88974271, 51.48970062, 64.00534117, 28.32498996,\n", " 95.96330362, 78.57156869, 11.26172063, 5.12727213, 83.23240357,\n", " 63.42265511, 7.90992072, 77.6435666 , 41.32153067, 87.12421958,\n", " 4.58744694, 21.34868307, 38.36679011, 1.11168295, 34.81460997,\n", " 23.7319703 , 55.55322603, 48.93390941, 66.01891832, 71.46395879,\n", " 62.992747 , 30.26651591, 28.89364795, 13.02103718, 88.40437453,\n", " 49.46881189, 56.98669103, 65.94627196, 73.44799534, 7.07694658,\n", " 57.50564017, 86.69127084, 51.97069366, 40.02469257, 61.93274575,\n", " 1.58154704, 93.39278209, 82.09048206, 99.30157407, 71.37967429,\n", " 99.65860368, 26.9048574 , 88.00957877, 63.99884793, 10.28088743,\n", " 18.48922532, 22.36531754, 72.60527259, 88.6110272 , 28.01144336,\n", " 17.52897011, 85.50803706, 14.10783113, 62.39177242, 76.29680583,\n", " 74.94812139, 4.76563935, 88.05763191, 13.73016167, 47.9184943 ,\n", " 30.94590316, 44.76643412, 54.71164969, 96.50874683, 6.4070926 ,\n", " 92.91869417, 2.33965435, 24.31750859, 45.16218788, 62.55255338,\n", " 3.60786013, 77.53976478, 98.73528801, 1.64118966, 35.96948083,\n", " 63.82340742, 29.28053425, 71.02014774, 28.73677381, 15.76749613,\n", " 32.00299167, 74.98351357, 19.09729316, 75.85201677, 97.38180446,\n", " 40.2195637 , 92.80691414, 88.18935951, 47.08953732, 99.64806564,\n", " 11.97679595, 13.6471891 , 13.29711511, 81.0494752 , 44.25642235,\n", " 85.61065761, 26.32544564, 99.8654296 , 61.32416734, 75.46948802,\n", " 73.42675464, 86.08518275, 30.78745229, 92.39237228, 4.69877434,\n", " 1.78078896, 65.81981226, 4.17379548, 82.92842122, 5.49215947,\n", " 69.63154521, 85.77172747, 95.26456345, 69.26493585, 8.31519357,\n", " 14.43209414, 62.24093408, 3.86016656, 58.90288874, 72.78974919,\n", " 86.08114266, 28.85912804, 42.74809433, 62.12023518, 37.06068036,\n", " 33.67501142, 72.67099543, 25.8959871 , 19.35368386, 77.86678593,\n", " 98.17072223, 91.9655844 , 37.40524565, 66.06172207, 21.42105259,\n", " 12.07382067, 24.46328008, 22.8252266 , 90.31364028, 71.45629137,\n", " 34.32928778, 49.90021701, 57.82790169, 90.18307693, 52.71020508,\n", " 4.37248993, 99.19034421, 43.49641918, 91.43200285, 38.88519619,\n", " 87.31336992, 85.27853155, 38.59268811, 21.38292392, 28.89497952,\n", " 63.97828694, 9.32114043, 94.2860323 , 67.32812315, 11.59505624,\n", " 89.60322313, 65.29211118, 28.35101787, 53.15742267, 97.06572541,\n", " 90.20759753, 99.72005092, 30.54779196, 99.87712067, 51.44041505,\n", " 77.06212412, 58.00468992, 89.70375746, 11.54967882, 65.99904723,\n", " 3.54165483, 39.59921523, 18.42266877, 41.91468144, 78.72957495,\n", " 37.74087603, 46.42494793, 45.51476976, 6.6295963 , 55.56110509,\n", " 41.70129659, 62.79875187, 43.5800473 , 71.13001042, 66.58592771,\n", " 34.88457248, 66.36602253, 70.42746458, 28.81987688, 23.82952431,\n", " 55.54583673, 18.86600223, 71.99843093, 69.58836276, 7.40583417,\n", " 55.9290922 , 63.88481835, 40.49188544, 81.76814657, 23.91812497,\n", " 97.12356037, 87.72888049, 23.5467403 , 9.91766421, 54.49355654,\n", " 94.80589326, 85.0925874 , 42.9035636 , 35.4074615 , 85.74094001,\n", " 85.29724961, 78.69422009, 93.88531889, 1.91114894, 8.35013631,\n", " 81.35857237, 96.58928956, 14.96986652, 4.51965273, 18.76465261,\n", " 48.20441099, 11.01367646, 32.5464884 , 83.91009799, 43.05660662,\n", " 55.58054646, 85.6051006 , 37.27065264, 29.23600466, 61.98880438,\n", " 23.40683658, 8.73572281, 12.5780708 , 61.97662 , 75.39708566,\n", " 30.86608386, 28.23203191, 80.31505372, 9.9430856 , 65.7743332 ,\n", " 80.53733201, 90.75376285, 50.19607544, 67.80631336, 7.65902916,\n", " 25.52639161, 32.78467178, 58.53780351, 66.21926794, 32.82406798,\n", " 48.56459098, 31.916896 , 22.19556823, 87.98891375, 33.93848311,\n", " 89.87015706, 43.46471924, 78.99058464, 74.8917485 , 53.49389516,\n", " 34.16920218, 8.36695026, 35.05523802, 36.44041851, 67.32627207,\n", " 20.68761506, 75.28144536, 81.84296375, 75.05291647, 25.89441905,\n", " 41.71943856, 60.32045188, 67.49597781, 8.59341878, 16.35732665,\n", " 82.27752258, 84.0430634 , 21.89443452, 57.84318896, 76.33390719,\n", " 5.03865717, 32.87868733, 39.98074345, 58.72895018, 53.89488776,\n", " 16.84976396, 76.37786876, 88.30790222, 95.18498538, 88.43881969,\n", " 10.74906256, 64.96716397, 6.38143823, 71.6895052 , 17.87446043,\n", " 57.62254779, 70.70280433, 13.58816799, 21.27095675, 73.02813501,\n", " 14.54336889, 81.12768622, 36.43237455, 98.33159296, 77.1175084 ,\n", " 56.32993189, 37.77787235, 86.15033356, 95.1657446 , 56.1391928 ,\n", " 3.33269156, 87.51147207, 12.48020131, 37.38358574, 51.82399254,\n", " 85.17045198, 10.06535465, 4.38184052, 88.72640384, 56.32410384,\n", " 5.68598327, 36.82194916, 92.78379779, 33.39425213, 54.95334915,\n", " 85.94358896, 83.63198392, 31.14138104, 25.76465325, 40.10815033,\n", " 29.93102743, 87.82450043, 87.0613059 , 98.5794072 , 55.842131 ,\n", " 79.01925454, 7.70400408, 52.11817952, 30.8189784 , 2.91965406,\n", " 13.6781815 , 15.12406058, 56.79443758, 26.53000083, 30.88338582,\n", " 65.50542143, 6.82709354, 54.19720068, 45.04461585, 87.87798472,\n", " 73.27065288, 54.22309175, 96.22197906, 23.35058715, 37.97415674,\n", " 72.42933878, 20.0757852 , 95.37401501, 85.05327666, 61.81980442,\n", " 69.05262958, 2.47239674, 32.78089927, 18.97786073, 14.66373124,\n", " 64.38037433, 14.06439643, 7.88521442, 34.27349917, 91.30270012,\n", " 50.77830259, 39.92756108, 64.42967576, 54.25245251, 18.46216324,\n", " 16.3073457 , 3.21559196, 90.83863994, 82.88699709, 96.34412644,\n", " 64.48614797, 79.30412286, 69.83996183, 47.19306815, 31.05912063,\n", " 91.19304615, 79.1326671 , 20.91611598, 53.23337673, 40.79977915,\n", " 75.96391179, 91.31188341, 4.60932064, 60.02520109, 80.06573205,\n", " 28.56731442, 10.91341691, 89.2289396 , 33.27688809, 88.98493405,\n", " 22.49696371, 27.43148086, 64.56889446, 47.91786999, 83.40675052,\n", " 94.32205803, 74.6907083 , 69.04350503, 82.47487169, 28.93519227,\n", " 46.39544481, 78.34537786, 12.09724051, 14.53354392, 82.302103 ,\n", " 17.19395458, 29.60479998, 69.93440739, 92.85866959, 61.61931256,\n", " 5.80564087, 50.15101646, 81.28072275, 36.94549342, 4.36878219,\n", " 5.87871949, 94.00096934, 65.22752929, 60.66694428, 88.27438076,\n", " 40.56594596, 23.74457297, 79.11077282, 34.30046574, 24.68386668,\n", " 99.08402707, 12.97650105, 78.91590839, 85.80182735, 95.04699804,\n", " 71.64920897, 13.5941554 , 80.01214555, 80.58090451, 64.91685865,\n", " 48.60988235, 11.78744087, 76.5527322 , 46.72406034, 88.70228966,\n", " 17.0732701 , 51.73385222, 41.25930885, 24.11436322, 47.46343385,\n", " 27.79711887, 64.86774917, 74.91027445, 60.12828689, 69.29063747,\n", " 46.42082819, 77.06172463, 28.75769098, 25.38818924, 62.86101569,\n", " 62.17339483, 60.23323666, 28.43954838, 11.10739197, 55.77612286,\n", " 12.67580226, 95.40992531, 62.42992154, 56.06482565, 46.12781689,\n", " 12.03525238, 9.89705202, 52.74351118, 94.65177242, 56.47294124,\n", " 15.82019626, 20.38215606, 2.38069139, 56.81831224, 80.84914494,\n", " 14.53097875, 88.48943365, 92.97658183, 92.57013978, 49.40256786,\n", " 56.06991209, 81.67945331, 97.11608435, 4.92776729, 1.3771565 ,\n", " 91.31110986, 90.80864324, 15.9037535 , 85.81519919, 79.76466967,\n", " 53.39190823, 40.88215654, 35.98198293, 91.2566525 , 69.75144119,\n", " 21.32552851, 48.98342546, 30.83134303, 3.02042083, 8.62269438,\n", " 31.47233402, 90.3420669 , 1.00491528, 41.7978035 , 21.63776208,\n", " 46.70208863, 59.92869295, 21.55388203, 62.98701444, 4.45183257,\n", " 88.13512421, 30.57894217, 67.18211241, 7.1852894 , 63.32296695,\n", " 40.47106611, 82.46440949, 55.99998777, 65.94642036, 17.88883329,\n", " 84.37839975, 70.25555238, 50.43084756, 37.37166596, 15.05648505,\n", " 76.20628745, 70.10005939, 52.17012073, 71.61366057, 67.03226755,\n", " 40.21254478, 8.80774537, 90.83517444, 85.03965457, 18.85223271,\n", " 77.42658886, 12.59288102, 52.47095802, 20.41637383, 85.87626666,\n", " 27.87167901, 59.44302695, 18.20788808, 10.44638281, 56.79568224,\n", " 37.6338477 , 52.92135026, 68.42349055, 34.1362987 , 52.95759166,\n", " 92.21537018, 1.66060537, 88.44675783, 80.98066845, 3.28514697,\n", " 54.01542978, 13.65847397, 16.99730425, 7.76964967, 3.88317039,\n", " 93.86374579, 36.13225968, 60.96492413, 29.45753097, 88.3003696 ,\n", " 97.0733586 , 27.05594121, 24.92214054, 93.61527649, 11.9576937 ,\n", " 99.84326102, 1.267823 , 46.33099186, 75.86836483, 70.78338433,\n", " 74.47149114, 88.04387566, 7.42541445, 17.97614452, 27.59771801,\n", " 23.26554208, 41.1571498 , 59.49604902, 65.47981923, 74.44316543,\n", " 20.58415102, 84.83878697, 46.34912541, 42.00300668, 15.54338058,\n", " 89.30469477, 94.97632108, 15.11922228, 26.02091974, 50.66762452,\n", " 41.08850685, 5.11189478, 91.92108523, 67.04864043, 14.66461341,\n", " 97.22322874, 76.70158353, 96.63558981, 52.79773946, 66.26472366,\n", " 17.74787387, 19.5352013 , 74.25434184, 12.53154567, 64.76064791])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 1 }