import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression def plot_linear_regression(): a = 0.5 b = 1.0 # x from 0 to 10 x = 30 * np.random.random(20) # y = a*x + b with noise y = a * x + b + np.random.normal(size=x.shape) # create a linear regression classifier clf = LinearRegression() clf.fit(x[:, None], y) # predict y from the data x_new = np.linspace(0, 30, 100) y_new = clf.predict(x_new[:, None]) # plot the results ax = plt.axes() ax.scatter(x, y) ax.plot(x_new, y_new) ax.set_xlabel('x') ax.set_ylabel('y') ax.axis('tight') if __name__ == '__main__': plot_linear_regression() plt.show()