mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Algorithmia update
This commit is contained in:
parent
f50d65d35e
commit
ea4588ad82
13
README.md
13
README.md
|
@ -233,18 +233,6 @@ IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
|
|||
|
||||
<br/>
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/algorithmia.png">
|
||||
</p>
|
||||
|
||||
## algorithmia
|
||||
|
||||
IPython Notebook(s) demonstrating using Machine Learning, Computer Vision and NLP algorithms.
|
||||
|
||||
| Notebook | Description |
|
||||
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Simple Usage](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition. |
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
|
||||
</p>
|
||||
|
@ -295,6 +283,7 @@ IPython Notebook(s) demonstrating miscellaneous functionality.
|
|||
| Notebook | Description |
|
||||
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
|
||||
[Algorithmia Examples](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
|
||||
|
||||
## notebook-installation
|
||||
|
||||
|
|
|
@ -16,11 +16,34 @@
|
|||
"Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n",
|
||||
"\n",
|
||||
"Table of Contents:\n",
|
||||
"1. Authentication\n",
|
||||
"2. Face Detection\n",
|
||||
"3. Content Summarizer\n",
|
||||
"4. Latent Dirichlet Allocation\n",
|
||||
"5. Optical Character Recognition"
|
||||
"1. Installation\n",
|
||||
"2. Authentication\n",
|
||||
"3. Face Detection\n",
|
||||
"4. Content Summarizer\n",
|
||||
"5. Latent Dirichlet Allocation\n",
|
||||
"6. Optical Character Recognition"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 1. Installation\n",
|
||||
"\n",
|
||||
"You need to have the `algorithmia` package (version 0.9.3) installed for this notebook.\n",
|
||||
"\n",
|
||||
"You can install the package using the pip package manager:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pip install algorithmia==0.9.3"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -41,7 +64,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 1. Authentication\n",
|
||||
"# 2. Authentication\n",
|
||||
"\n",
|
||||
"You only need your Algorithmia API Key to run the following commands."
|
||||
]
|
||||
|
@ -63,7 +86,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 2. Face Detection\n",
|
||||
"# 3. Face Detection\n",
|
||||
"\n",
|
||||
"Uses a pretrained model to detect faces in a given image.\n",
|
||||
"\n",
|
||||
|
@ -167,7 +190,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 3. Content Summarizer\n",
|
||||
"# 4. Content Summarizer\n",
|
||||
"\n",
|
||||
"SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory."
|
||||
]
|
||||
|
@ -225,7 +248,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 4. Latent Dirichlet Allocation\n",
|
||||
"# 5. Latent Dirichlet Allocation\n",
|
||||
"\n",
|
||||
"This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n",
|
||||
"\n",
|
||||
|
@ -325,7 +348,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 5. Optical Character Recognition\n",
|
||||
"# 6. Optical Character Recognition\n",
|
||||
"\n",
|
||||
"Recognize text in your images.\n",
|
||||
"\n",
|
||||
|
@ -416,7 +439,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.10"
|
||||
"version": "2.7.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
Loading…
Reference in New Issue
Block a user