Algorithmia update

This commit is contained in:
A. Besir Kurtulmus 2016-01-18 17:08:06 +02:00
parent f50d65d35e
commit ea4588ad82
2 changed files with 35 additions and 23 deletions

View File

@ -233,18 +233,6 @@ IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
<br/> <br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/algorithmia.png">
</p>
## algorithmia
IPython Notebook(s) demonstrating using Machine Learning, Computer Vision and NLP algorithms.
| Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Simple Usage](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition. |
<p align="center"> <p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png"> <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
</p> </p>
@ -295,6 +283,7 @@ IPython Notebook(s) demonstrating miscellaneous functionality.
| Notebook | Description | | Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.| | [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
[Algorithmia Examples](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
## notebook-installation ## notebook-installation

View File

@ -16,11 +16,34 @@
"Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n", "Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n",
"\n", "\n",
"Table of Contents:\n", "Table of Contents:\n",
"1. Authentication\n", "1. Installation\n",
"2. Face Detection\n", "2. Authentication\n",
"3. Content Summarizer\n", "3. Face Detection\n",
"4. Latent Dirichlet Allocation\n", "4. Content Summarizer\n",
"5. Optical Character Recognition" "5. Latent Dirichlet Allocation\n",
"6. Optical Character Recognition"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Installation\n",
"\n",
"You need to have the `algorithmia` package (version 0.9.3) installed for this notebook.\n",
"\n",
"You can install the package using the pip package manager:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"pip install algorithmia==0.9.3"
] ]
}, },
{ {
@ -41,7 +64,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 1. Authentication\n", "# 2. Authentication\n",
"\n", "\n",
"You only need your Algorithmia API Key to run the following commands." "You only need your Algorithmia API Key to run the following commands."
] ]
@ -63,7 +86,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 2. Face Detection\n", "# 3. Face Detection\n",
"\n", "\n",
"Uses a pretrained model to detect faces in a given image.\n", "Uses a pretrained model to detect faces in a given image.\n",
"\n", "\n",
@ -167,7 +190,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 3. Content Summarizer\n", "# 4. Content Summarizer\n",
"\n", "\n",
"SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory." "SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory."
] ]
@ -225,7 +248,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 4. Latent Dirichlet Allocation\n", "# 5. Latent Dirichlet Allocation\n",
"\n", "\n",
"This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n", "This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n",
"\n", "\n",
@ -325,7 +348,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 5. Optical Character Recognition\n", "# 6. Optical Character Recognition\n",
"\n", "\n",
"Recognize text in your images.\n", "Recognize text in your images.\n",
"\n", "\n",
@ -416,7 +439,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython2", "pygments_lexer": "ipython2",
"version": "2.7.10" "version": "2.7.11"
} }
}, },
"nbformat": 4, "nbformat": 4,