Algorithmia update

This commit is contained in:
A. Besir Kurtulmus 2016-01-18 17:08:06 +02:00
parent f50d65d35e
commit ea4588ad82
2 changed files with 35 additions and 23 deletions

View File

@ -233,18 +233,6 @@ IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/algorithmia.png">
</p>
## algorithmia
IPython Notebook(s) demonstrating using Machine Learning, Computer Vision and NLP algorithms.
| Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Simple Usage](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition. |
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
</p>
@ -295,6 +283,7 @@ IPython Notebook(s) demonstrating miscellaneous functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
[Algorithmia Examples](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/algorithmia/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
## notebook-installation

View File

@ -16,11 +16,34 @@
"Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n",
"\n",
"Table of Contents:\n",
"1. Authentication\n",
"2. Face Detection\n",
"3. Content Summarizer\n",
"4. Latent Dirichlet Allocation\n",
"5. Optical Character Recognition"
"1. Installation\n",
"2. Authentication\n",
"3. Face Detection\n",
"4. Content Summarizer\n",
"5. Latent Dirichlet Allocation\n",
"6. Optical Character Recognition"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Installation\n",
"\n",
"You need to have the `algorithmia` package (version 0.9.3) installed for this notebook.\n",
"\n",
"You can install the package using the pip package manager:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"pip install algorithmia==0.9.3"
]
},
{
@ -41,7 +64,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Authentication\n",
"# 2. Authentication\n",
"\n",
"You only need your Algorithmia API Key to run the following commands."
]
@ -63,7 +86,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Face Detection\n",
"# 3. Face Detection\n",
"\n",
"Uses a pretrained model to detect faces in a given image.\n",
"\n",
@ -167,7 +190,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. Content Summarizer\n",
"# 4. Content Summarizer\n",
"\n",
"SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory."
]
@ -225,7 +248,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. Latent Dirichlet Allocation\n",
"# 5. Latent Dirichlet Allocation\n",
"\n",
"This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n",
"\n",
@ -325,7 +348,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. Optical Character Recognition\n",
"# 6. Optical Character Recognition\n",
"\n",
"Recognize text in your images.\n",
"\n",
@ -416,7 +439,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
"version": "2.7.11"
}
},
"nbformat": 4,