mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Shortened scikit-learn link labels to improve readability.
This commit is contained in:
parent
4202b45d1f
commit
d25fe66682
16
README.md
16
README.md
|
@ -94,14 +94,14 @@ Credits: Forked from [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakev
|
||||||
|
|
||||||
| Notebook | Description |
|
| Notebook | Description |
|
||||||
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
||||||
| [scikit-learn-knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | K-Nearest Neighbors. |
|
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | K-Nearest Neighbors. |
|
||||||
| [scikit-learn-linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Linear regression. |
|
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Linear regression. |
|
||||||
| [scikit-learn-svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Support vector machine classifier, with and without kernels. |
|
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Support vector machine classifier, with and without kernels. |
|
||||||
| [scikit-learn-random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Random forest classifier and regressor. |
|
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Random forest classifier and regressor. |
|
||||||
| [scikit-learn-k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | K-Means Clustering. |
|
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | K-Means Clustering. |
|
||||||
| [scikit-learn-pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Principal Component Analysis. |
|
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Principal Component Analysis. |
|
||||||
| [scikit-learn-validation](#scikit-learn) | Coming Soon. |
|
| [validation](#scikit-learn) | Coming Soon. |
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
|
|
Loading…
Reference in New Issue
Block a user