mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Update Churn Analysis notebook README description
Makes the description more consistent with other notebooks.
This commit is contained in:
parent
ba5d8ef032
commit
c1ed46758c
|
@ -64,7 +64,7 @@ IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and b
|
|||
| Notebook | Description |
|
||||
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
|
||||
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
||||
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
|
|
Loading…
Reference in New Issue
Block a user