mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Merge pull request #23 from AnishShah/master
Change tf.types.int16 to tf.int16
This commit is contained in:
commit
bd71848b65
|
@ -15,7 +15,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true
|
"collapsed": true
|
||||||
},
|
},
|
||||||
|
@ -26,7 +26,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true
|
"collapsed": true
|
||||||
},
|
},
|
||||||
|
@ -41,7 +41,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
|
@ -68,7 +68,7 @@
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 5,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true
|
"collapsed": false
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -76,8 +76,8 @@
|
||||||
"# The value returned by the constructor represents the output\n",
|
"# The value returned by the constructor represents the output\n",
|
||||||
"# of the Variable op. (define as input when running session)\n",
|
"# of the Variable op. (define as input when running session)\n",
|
||||||
"# tf Graph input\n",
|
"# tf Graph input\n",
|
||||||
"a = tf.placeholder(tf.types.int16)\n",
|
"a = tf.placeholder(tf.int16)\n",
|
||||||
"b = tf.placeholder(tf.types.int16)"
|
"b = tf.placeholder(tf.int16)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -194,25 +194,34 @@
|
||||||
" result = sess.run(product)\n",
|
" result = sess.run(product)\n",
|
||||||
" print result"
|
" print result"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 2",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python2"
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
"name": "ipython",
|
"name": "ipython",
|
||||||
"version": 3
|
"version": 2
|
||||||
},
|
},
|
||||||
"file_extension": ".py",
|
"file_extension": ".py",
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython2",
|
||||||
"version": "3.4.3"
|
"version": "2.7.5+"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -86,9 +86,9 @@
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# tf Graph input\n",
|
"# tf Graph input\n",
|
||||||
"x = tf.placeholder(tf.types.float32, [None, n_input])\n",
|
"x = tf.placeholder(tf.float32, [None, n_input])\n",
|
||||||
"y = tf.placeholder(tf.types.float32, [None, n_classes])\n",
|
"y = tf.placeholder(tf.float32, [None, n_classes])\n",
|
||||||
"keep_prob = tf.placeholder(tf.types.float32) # dropout (keep probability)"
|
"keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -218,7 +218,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"# Evaluate model\n",
|
"# Evaluate model\n",
|
||||||
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
||||||
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))"
|
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -323,21 +323,21 @@
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 2",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python2"
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
"name": "ipython",
|
"name": "ipython",
|
||||||
"version": 3
|
"version": 2
|
||||||
},
|
},
|
||||||
"file_extension": ".py",
|
"file_extension": ".py",
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython2",
|
||||||
"version": "3.4.3"
|
"version": "2.7.5+"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -86,9 +86,9 @@
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# tf Graph input\n",
|
"# tf Graph input\n",
|
||||||
"x = tf.placeholder(tf.types.float32, [None, n_input])\n",
|
"x = tf.placeholder(tf.float32, [None, n_input])\n",
|
||||||
"y = tf.placeholder(tf.types.float32, [None, n_classes])\n",
|
"y = tf.placeholder(tf.float32, [None, n_classes])\n",
|
||||||
"keep_prob = tf.placeholder(tf.types.float32) #dropout (keep probability)"
|
"keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -201,7 +201,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"# Evaluate model\n",
|
"# Evaluate model\n",
|
||||||
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
||||||
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))"
|
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -299,21 +299,21 @@
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 2",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python2"
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
"name": "ipython",
|
"name": "ipython",
|
||||||
"version": 3
|
"version": 2
|
||||||
},
|
},
|
||||||
"file_extension": ".py",
|
"file_extension": ".py",
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython2",
|
||||||
"version": "3.4.3"
|
"version": "2.7.5+"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
|
@ -137,7 +137,7 @@
|
||||||
"\n",
|
"\n",
|
||||||
"# Evaluate model\n",
|
"# Evaluate model\n",
|
||||||
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
|
||||||
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))"
|
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -272,21 +272,21 @@
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 2",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python2"
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
"name": "ipython",
|
"name": "ipython",
|
||||||
"version": 3
|
"version": 2
|
||||||
},
|
},
|
||||||
"file_extension": ".py",
|
"file_extension": ".py",
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython2",
|
||||||
"version": "3.4.3"
|
"version": "2.7.5+"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user