Update applied matplotlib notebook README description

Makes the description more consistent with other notebooks.
This commit is contained in:
Donne Martin 2016-06-20 05:33:42 -04:00
parent 60735896bd
commit b2da6e6704

View File

@ -175,7 +175,7 @@ IPython Notebook(s) demonstrating matplotlib functionality.
| Notebook | Description | | Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------| |-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| [matplotlib](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. | | [matplotlib](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. |
| [matplotlib-applied](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib-applied.ipynb) | Matplotlib visualizations appied to Kaggle competitions for exploratory data analysis. Examples of bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. | | [matplotlib-applied](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib-applied.ipynb) | Apply matplotlib visualizations to Kaggle competitions for exploratory data analysis. Learn how to create bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. |
<br/> <br/>
<p align="center"> <p align="center">