diff --git a/kaggle/titanic.ipynb b/kaggle/titanic.ipynb index a04ddfc..ca14ee5 100644 --- a/kaggle/titanic.ipynb +++ b/kaggle/titanic.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:49e4a7e220fabc95e50ebfaf3337366b788c90a91f0c6cffdbb5588fd456923d" + "signature": "sha256:65b853762ab4a84c820902849d99ff6205fb1cc37e8c4b9b84d15cfd3ce9ecab" }, "nbformat": 3, "nbformat_minor": 0, @@ -152,7 +152,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 42 + "prompt_number": 1 }, { "cell_type": "markdown", @@ -243,7 +243,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 43, + "prompt_number": 2, "text": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", @@ -262,7 +262,7 @@ ] } ], - "prompt_number": 43 + "prompt_number": 2 }, { "cell_type": "code", @@ -346,7 +346,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 44, + "prompt_number": 3, "text": [ " PassengerId Survived Pclass Name \\\n", "888 889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n", @@ -360,7 +360,7 @@ ] } ], - "prompt_number": 44 + "prompt_number": 3 }, { "cell_type": "markdown", @@ -381,7 +381,7 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 45, + "prompt_number": 4, "text": [ "PassengerId int64\n", "Survived int64\n", @@ -399,7 +399,7 @@ ] } ], - "prompt_number": 45 + "prompt_number": 4 }, { "cell_type": "markdown", @@ -440,7 +440,7 @@ ] } ], - "prompt_number": 46 + "prompt_number": 5 }, { "cell_type": "markdown", @@ -568,7 +568,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 47, + "prompt_number": 6, "text": [ " PassengerId Survived Pclass Age SibSp \\\n", "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", @@ -592,7 +592,197 @@ ] } ], - "prompt_number": 47 + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature: Passenger Classes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the unique values of Pclass:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "passenger_classes = sort(df['Pclass'].unique())\n", + "passenger_classes" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 7, + "text": [ + "array([1, 2, 3])" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot a histogram of Pclass:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df['Pclass'].hist(bins=len(passenger_classes))\n", + "plt.show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAExhJREFUeJzt3W+MZXddx/H3t93WUpCuTc3238I2gQbWmGyjrEQsHCPW\nSqTtA9OWBGylMcZqSkg0bImx8UktPLExpomJYDco1Y1ILYL0n3sMPKANupXSpdImDmErO1WgLdA0\n6ZavD+ZsOw53d+7Mnju/vd95v5LJnnPn3Lkffj372XO/994hMhNJUl2ntA4gSZoti16SirPoJak4\ni16SirPoJak4i16Sipuq6CNiISK+EhEHIuLh4bazI+L+iPh6RNwXEVuXHX9zRDwREY9HxGWzCi9J\nWt20V/QJdJl5SWbuHm7bA9yfmRcDDw77RMRO4BpgJ3A5cEdE+MxBkhpZSwHHiv0rgL3D9l7gqmH7\nSuCuzHwxMxeAJ4HdSJKaWMsV/QMR8eWI+K3htm2ZuThsLwLbhu3zgUPL7nsIuOCEk0qS1mXLlMe9\nLTO/FRE/CdwfEY8v/2ZmZkQc73cp+HsWJKmRqYo+M781/Pk/EfFplkYxixFxbmYejojzgKeHw58C\nti+7+4XDbS9b5R8FSdIxZObKMfqqVh3dRMSZEfHjw/argcuAR4F7gOuGw64D7h627wGujYjTI+Ii\n4I3AwxPC+jXS1y233NI8Q6Uv19O1PFm/1muaK/ptwKcj4ujxf5OZ90XEl4F9EXEDsABcPRT4wYjY\nBxwEjgA35okk1KoWFhZaRyjF9RyPa3lyWLXoM/O/gF0Tbv8O8M5j3OdW4NYTTidJOmHR4mI7IrzI\nH1Hf93Rd1zpGGZXXc3hmrjmW65jRW/TSJrJU9P7dm1+xrqL3E6sF9H3fOkIprueY+tYBhEUvSeU5\nupE2EUc3887RjSRpAou+AGfK43I9x9S3DiAsekkqzxm9tIk4o593zuglSRNY9AU4Ux6X6zmmvnUA\nYdFLUnnO6KVNxBn9vHNGL0mawKIvwJnyuFzPMfWtAwiLXpLKc0YvbSLO6OedM3pJ0gQWfQHOlMfl\neo6pbx1AWPSSVJ4zemkTcUY/75zRS5ImsOgLcKY8LtdzTH3rAMKil6TynNFLm4gz+nnnjF6SNIFF\nX4Az5XG5nmPqWwcQFr0kleeMXtpEnNHPO2f0kqQJLPoCnCmPy/UcU986gLDoJak8Z/TSJuKMft45\no5ckTWDRF+BMeVyu55j61gGERS9J5U01o4+IU4EvA4cy890RcTbwd8DrgQXg6sx8Zjj2ZuD9wEvA\nTZl534Sf54xeasAZ/byb7Yz+A8BBXjlD9gD3Z+bFwIPDPhGxE7gG2AlcDtwRET5rkKSGVi3hiLgQ\neBfwl8DRf0muAPYO23uBq4btK4G7MvPFzFwAngR2jxlYP8qZ8rhczzH1rQOI6a7o/xT4A+CHy27b\nlpmLw/YisG3YPh84tOy4Q8AFJxpSkrR+W473zYj4NeDpzDwQEd2kYzIzI+J4Q7+J37v++uvZsWMH\nAFu3bmXXrl103dJDHL2icn+6/aO3nSx55n3/6G0nS57x//f1w58bsd9t8ONV2++BO4f9HazXcV+M\njYhbgfcBR4AzgNcC/wC8Begy83BEnAfsz8w3RcQegMy8bbj/54FbMvOhFT/XF2OlBnwxdt7N4MXY\nzPxwZm7PzIuAa4F/ycz3AfcA1w2HXQfcPWzfA1wbEadHxEXAG4GH1xpKa+NMeVyu55j61gHEKqOb\nCY5eCtwG7IuIGxjeXgmQmQcjYh9L79A5AtzopbskteXvupE2EUc3887fdSNJmsCiL8CZ8rhczzH1\nrQMIi16SynNGL20izujnnTN6SdIEFn0BzpTH5XqOqW8dQFj0klSeM3ppE3FGP++c0UuSJrDoC3Cm\nPC7Xc0x96wDCopek8pzRS5uIM/p554xekjSBRV+AM+VxuZ5j6lsHEBa9JJXnjF7aRJzRzztn9JKk\nCSz6Apwpj8v1HFPfOoCw6CWpPGf00ibijH7eOaOXJE1g0RfgTHlcrueY+tYBhEUvSeU5o5c2EWf0\n884ZvSRpAou+AGfK43I9x9S3DiAsekkqzxm9tIk4o593zuglSRNY9AU4Ux6X6zmmvnUAYdFLUnnO\n6KVNxBn9vHNGL0mawKIvwJnyuFzPMfWtAwiLXpLKO+6MPiLOAP4V+DHgdOAfM/PmiDgb+Dvg9cAC\ncHVmPjPc52bg/cBLwE2Zed+En+uMXmrAGf28W9+MftUXYyPizMx8PiK2AF8Efh+4AvjfzPxoRHwI\n+InM3BMRO4FPAm8BLgAeAC7OzB+u+JkWvdSART/vZvRibGY+P2yeDpwKfJelot873L4XuGrYvhK4\nKzNfzMwF4Elg91pDaW2cKY/L9RxT3zqAmKLoI+KUiHgEWAT2Z+ZjwLbMXBwOWQS2DdvnA4eW3f0Q\nS1f2kqRGtqx2wDB22RURZwH3RsQvrvh+RsTxngv6PHHGuq5rHaEU13NMXesAYoqiPyozn42IzwI/\nAyxGxLmZeTgizgOeHg57Cti+7G4XDrf9iOuvv54dO3YAsHXrVnbt2vXyX7CjT53dd9/98fdfGae4\nf/Lv98Cdw/4O1mu1d92cAxzJzGci4lXAvcAfA78CfDszPxIRe4CtK16M3c0rL8a+YeUrr74YO66+\n770KHVHl9dz4F2N7vKof0/pejF3tiv48YG9EnMLSPP8TmflgRBwA9kXEDQxvrwTIzIMRsQ84CBwB\nbrTRJaktf9eNtIn49sp55++6kSRNYNEX4Pu+x+V6jqlvHUBY9JJUnjN6aRNxRj/vnNFLkiaw6Atw\npjwu13NMfesAwqKXpPKc0UubiDP6eeeMXpI0gUVfgDPlcbmeY+pbBxAWvSSV54xe2kSc0c87Z/SS\npAks+gKcKY/L9RxT3zqAsOglqTxn9NIm4ox+3jmjlyRNYNEX4Ex5XK7nmPrWAYRFL0nlOaOXNhFn\n9PPOGb0kaQKLvgBnyuNyPcfUtw4gLHpJKs8ZvbSJOKOfd87oJUkTWPQFOFMel+s5pr51AGHRS1J5\nzuilTcQZ/bxzRi9JmsCiL8CZ8rhczzH1rQMIi16SynNGL20izujn3fpm9FtmEWUa3/jGN1o9tE7Q\ntm3bOOOMM1rHkDSlZlf0r3716zb8cat66aUXOPXUjSneF144zP79D3DppZduyOO10Pc9Xde1jjET\nG39F3wPdBj5edXN2Rf+DH3hFP56ejfrLdNZZdQteqsoXY0voWgcoperVfBtd6wBiiqKPiO0RsT8i\nHouIr0bETcPtZ0fE/RHx9Yi4LyK2LrvPzRHxREQ8HhGXzfJ/gCTp+Ka5on8R+GBm/hTwVuB3I+LN\nwB7g/sy8GHhw2CcidgLXADuBy4E7IsJnDjPVtw5Qiu+jH1PfOoCYougz83BmPjJsfx/4GnABcAWw\ndzhsL3DVsH0lcFdmvpiZC8CTwO6Rc0uSprSmK+2I2AFcAjwEbMvMxeFbi8C2Yft84NCyux1i6R8G\nzUzXOkApzujH1LUOINZQ9BHxGuBTwAcy83vLvzd8+ul479nyExqS1MhUb6+MiNNYKvlPZObdw82L\nEXFuZh6OiPOAp4fbnwK2L7v7hcNtK1wP7Bi2twK7eOVf/3740/3p9m9nI9fvwIEDvPTSSy9f+R6d\naVfZv/3229m1a9dJk2fs/Y09P49ub9TjVdvvgTuH/R2s16ofmIqlT1jsBb6dmR9cdvtHh9s+EhF7\ngK2ZuWd4MfaTLM3lLwAeAN6w/HceRER6kT+mno18H/1nPnOrH5iaU35gat7N7gNTbwPeC3wlIg4M\nt90M3Absi4gbgAXgaoDMPBgR+4CDwBHgRn+xzax1rQOUUrXk2+haBxBTFH1mfpFjz/LfeYz73Arc\negK5JEkj8f3tJfStA5Ti++jH1LcOICx6SSrPoi+hax2gFGf0Y+paBxANf3ul5tfb3/721hEkrYFX\n9CX0DR4zC3/tPwkyzOpro/UNHlMrWfSSVJxFX0LXOkAxXesAhXStAwiLXpLKs+hL6FsHKKZvHaCQ\nvnUAYdFLUnkWfQld6wDFdK0DFNK1DiAsekkqz6IvoW8doJi+dYBC+tYBhEUvSeVZ9CV0rQMU07UO\nUEjXOoCw6CWpPIu+hL51gGL61gEK6VsHEBa9JJVn0ZfQtQ5QTNc6QCFd6wDCopek8iz6EvrWAYrp\nWwcopG8dQFj0klSeRV9C1zpAMV3rAIV0rQMIi16SyrPoS+hbByimbx2gkL51AGHRS1J5Fn0JXesA\nxXStAxTStQ4gLHpJKs+iL6FvHaCYvnWAQvrWAYRFL0nlWfQldK0DFNO1DlBI1zqAsOglqTyLvoS+\ndYBi+tYBCulbBxAWvSSVZ9GX0LUOUEzXOkAhXesAwqKXpPJWLfqI+HhELEbEo8tuOzsi7o+Ir0fE\nfRGxddn3bo6IJyLi8Yi4bFbBtVzfOkAxfesAhfStA4jpruj/Crh8xW17gPsz82LgwWGfiNgJXAPs\nHO5zR0T4rEGSGlq1hDPzC8B3V9x8BbB32N4LXDVsXwnclZkvZuYC8CSwe5yoOraudYBiutYBCula\nBxDrn9Fvy8zFYXsR2DZsnw8cWnbcIeCCdT6GJGkEW070B2RmRkQe75DJN18P7Bi2twK7eOVf/374\n0/3p9m9nY9fv6G0b9Xgbvb/R61l5/+j2yZJn3vZ74M5hfwfrFZnH6+jhoIgdwGcy86eH/ceBLjMP\nR8R5wP7MfFNE7AHIzNuG4z4P3JKZD634eXnM/tc69GzUU+SzzrqUZ5/9IrX/+/XUHTkEG/vfrqfu\nWrYQZGas9V7rHd3cA1w3bF8H3L3s9msj4vSIuAh4I/DwOh9DU+taByimax2gkK51ADHF6CYi7gLe\nAZwTEd8E/gi4DdgXETcAC8DVAJl5MCL2AQeBI8CNOc1TBknSzEw1uhn9QR3djKzH0c2YeupeiTq6\nmW8bO7qRJM0Ji76ErnWAYrrWAQrpWgcQFr0klWfRl9C3DlBM3zpAIX3rAMKil6TyLPoSutYBiula\nByikax1AWPSSVJ5FX0LfOkAxfesAhfStAwiLXpLKs+hL6FoHKKZrHaCQrnUAYdFLUnkWfQl96wDF\n9K0DFNK3DiAsekkqz6IvoWsdoJiudYBCutYBhEUvSeVZ9CX0rQMU07cOUEjfOoCw6CWpPIu+hK51\ngGK61gEK6VoHEBa9JJVn0ZfQtw5QTN86QCF96wDCopek8iz6ErrWAYrpWgcopGsdQFj0klSeRV9C\n3zpAMX3rAIX0rQMIi16SyrPoS+haByimax2gkK51AGHRS1J5Fn0JfesAxfStAxTStw4gLHpJKs+i\nL6FrHaCYrnWAQrrWAYRFL0nlWfQl9K0DFNO3DlBI3zqAsOglqTyLvoSudYBiutYBCulaBxAWvSSV\nN5Oij4jLI+LxiHgiIj40i8fQcn3rAMX0rQMU0rcOIGZQ9BFxKvDnwOXATuA9EfHmsR9Hyz3SOkAx\nrud4XMuTwSyu6HcDT2bmQma+CPwtcOUMHkcve6Z1gGJcz/G4lieDWRT9BcA3l+0fGm6TJDWwZQY/\nM6c56LWvffcMHnpzev75A5x55r9tyGO98MJjG/I4bS20DlDIQusAYjZF/xSwfdn+dpau6v+f5577\npxk89Ob13HNPbfAjxgY/3kbb2zrADG30f7vKazkfInOqC/Dpf2DEFuA/gV8C/ht4GHhPZn5t1AeS\nJE1l9Cv6zDwSEb8H3AucCnzMkpekdka/opcknVxm9snYiPh4RCxGxKPHOebPhg9V/UdEXDKrLBWs\ntp4R0UXEsxFxYPj6w43OOC8iYntE7I+IxyLiqxFx0zGO8/ycwjTr6fk5vYg4IyIeiohHIuJgRPzJ\nMY6b/vzMzJl8AZcClwCPHuP77wI+N2z/HPClWWWp8DXFenbAPa1zzsMXcC6wa9h+DUuvKb15xTGe\nn+Oup+fn2tb0zOHPLcCXgF9Y8f01nZ8zu6LPzC8A3z3OIVcwvByfmQ8BWyNi26zyzLsp1hPqvxVm\nFJl5ODMfGba/D3wNOH/FYZ6fU5pyPcHzc2qZ+fyweTpLr3V+Z8Uhazo/W/5Ss0kfrLqwUZYKEvj5\n4Wnc5yJiZ+tA8yAidrD0TOmhFd/y/FyH46yn5+caRMQpEfEIsAjsz8yDKw5Z0/k5i/fRr8XKf+F9\nZXj9/h3YnpnPR8SvAncDFzfOdFKLiNcAfw98YLgS/ZFDVux7fh7HKuvp+bkGmflDYFdEnAXcGxFd\nZvYrDpv6/Gx5Rb/yg1UXDrdpHTLze0ef7mXmPwOnRcTZjWOdtCLiNOBTwF9n5t0TDvH8XIPV1tPz\nc30y81ngs8DPrvjWms7PlkV/D/AbABHxVuCZzFxsmGeuRcS2iIhhezdLb51dOdcTMKzTx4CDmXn7\nMQ7z/JzSNOvp+Tm9iDgnIrYO268Cfhk4sOKwNZ2fMxvdRMRdwDuAcyLim8AtwGkAmfkXmfm5iHhX\nRDwJ/AD4zVllqWC19QR+HfidiDgCPA9c2yrrHHgb8F7gKxFx9C/Qh4HXgefnOqy6nnh+rsV5wN6I\nOIWli/FPZOaDEfHbsL7z0w9MSVJx/l8JSlJxFr0kFWfRS1JxFr0kFWfRS1JxFr0kFWfRS1JxFr0k\nFfd/Ohn7L8QoQe4AAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a cross tab of Pclass and Survived:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pclass_xt = pd.crosstab(df['Pclass'], df['Survived'])\n", + "pclass_xt" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Survived01
Pclass
1 80 136
2 97 87
3 372 119
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 9, + "text": [ + "Survived 0 1\n", + "Pclass \n", + "1 80 136\n", + "2 97 87\n", + "3 372 119" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Normalize the cross tab to sum to 1:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pclass_xt_pct = pclass_xt.div(pclass_xt.sum(1).astype(float), axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the cross tab:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pclass_xt_pct.plot(kind='bar', stacked=True)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 11, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEKCAYAAADdBdT9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGItJREFUeJzt3X+QnGWZ7vHvZSYrhJCaIOJKwDOpBV1iSCbLjwOFBY3s\natQNFJYwlbPAhj3ngGui/HFOLbuUylhUzjk51lb5I/4IW6xjKRJSgLsgrNSu8q6rIGxwICgJJC6p\nSoDgegKEQGSTcJ8/pjMOk5npyfTb/czz9vWpomre7pd+7u5bL565++0eRQRmZpaXt6QuwMzMjpzD\n28wsQw5vM7MMObzNzDLk8DYzy5DD28wsQw3DW9LfSnpB0hMTnPMlSVslPS5pSbklmpnZaJPZeX8D\nWDrenZI+DJwSEacC1wBfK6k2MzMbR8Pwjoh/AV6c4JSLgW/Wz30Y6Jb0jnLKMzOzsZQx854H7Bhx\nvBM4qYTHNTOzcZT1hqVGHfsz92ZmLdRVwmM8C5w84vik+m1vIsmBbmY2BRExeoNcSnjfDawC1ks6\nB3gpIl4Yp4ASlpscSdDftuXgAeDCNq7X397Xs53cu7y5f+WSDsttYBLhLek24ALgeEk7gBuBmQAR\nsS4i7pP0YUnbgFeBq0urOicvpS7Apsy9y1uH9q9heEfE8kmcs6qccszMbDL8Ccuy9KYuwKbMvctb\nh/bP4V2W+akLsClz7/LWof0r4w3Lpow3jC9Ff+seelqua1PzDB0bAJXQof1LHt5QrXfeW/ofIzOz\nOo9NzDpw11YpHdo/h7eZWYYc3mbPpC7AmtKh/Zu24b169WoWLlzI4sWLWbJkCY888kjTj3nPPfew\nZs2aEqqD2bNnl/I4ZmZTMS3esBztoYce4t5772VwcJCZM2eye/duXn/99Un9uwcOHKCra+yntWzZ\nMpYtW1ZKjX5jskI6dGZaGR3av2m58961axfHH388M2fOBOC4447jne98Jz09PezevRuAjRs3cuGF\nQ19o0N/fz5VXXsn73vc+rrrqKs4991yefPLJ4cer1Wo8+uijDAwM8MlPfpI9e/bQ09MzfP+rr77K\nu971Lg4ePMgvf/lLPvShD3HmmWdy/vnn89RTTwHwzDPPcO6557Jo0SI+/elPt+mVMDMb27QM7w98\n4APs2LGD97znPaxcuZIf/ehHwMS73S1btvCDH/yA73znO/T19bFhwwYAnn/+eXbt2sUZZ5wxfO6c\nOXPo7e2lKAoAvve977F06VJmzJjBNddcw5e//GU2btzI5z//eT7xiU8AcN1117Fy5Uo2bdrEiSee\n2KJnbkl06My0Mjq0f9MyvI855hgeffRRbr75Zt7+9rfT19fHwMDAuOdL4uKLL+atb30rAJdffjl3\n3HEHABs2bOCyyy477N/p6+vj9ttvB2D9+vX09fWxd+9eHnzwQS677DKWLFnCxz/+cXbt2gXAgw8+\nyPLlQ1/zcsUVV5T5dM3Mjti0nHkDvOUtb+GCCy7gggsu4PTTT2dgYICuri7eeOMNAH7zm9+86fxZ\ns2YN/3ziiSfytre9jSeeeIINGzawbt064M0792XLlnHDDTfw4osv8rOf/Yz3v//9vPLKK8ydO5fB\nwcE2PEObNjp0ZloZHdq/abnzfvrpp9m6devw8eDgID09PfT09LBx40YA7rzzzuH7x/qEZl9fH2vW\nrGHPnj0sXLjwsPNmz57NWWedxac+9SmWLVuGJObMmcP8+fOHd+0RwaZNmwA477zzWL9+PQC33npr\nyc/YzOzITMvw3rt3LytWrOC9730vixcvZsuWLXzuc5/jxhtv5LrrruOss86iq6treCct6bB5+Mc+\n9jFuv/12Lr/88uHbRp/X19c3PCM/5NZbb+WWW26ht7eXhQsXcvfddwPwxS9+ka985SssWrSI5557\nzlebVEmHzkwro0P7p3Z9r4ikGGstSdX7bpP+NizUX63vhBmp7X+Jpd1fbNRf3d6B+1e2ekYetluc\nljtvs7bq0JlpZXRo/xzeZmYZcnibdejMtDI6tH8ObzOzDDm8zTp0ZloZHdo/h7eZWYYc3mYdOjOt\njA7tn8PbzCxD0za8D30aspX/TNbu3bu59NJLmT17Nj09Pdx2220tfObWdh06M62MDu3ftP1iqiGt\n/BTT5MN75cqVHHXUUfzqV79icHCQj3zkIyxevJgFCxa0sD4zs/FN2533dPHqq69y1113cdNNNzFr\n1izOO+88LrnkEr71rW+lLs3K0qEz08ro0P45vBt4+umn6erq4pRTThm+bfHixfziF79IWJWZdTqH\ndwN79+5lzpw5b7rt2GOP5ZVXXklUkZWuQ2emldGh/XN4NzB79mz27Nnzpttefvlljj322EQVmZk5\nvBt697vfzYEDB9i2bdvwbY8//vjwH3iwCujQmWlldGj/HN4NHHPMMXz0ox/ls5/9LK+99ho//vGP\nueeee7jyyitTl2ZmHczhPQlf/epX2bdvHyeccAJXXHEFX//61znttNNSl2Vl6dCZaWV0aP+m+XXe\n0+NPjc2dO5fvfve7qcswMxs2bcO7yn8myqaZdv8ZLStXh/bPYxMzsww1DG9JSyVtkbRV0vVj3H+8\npO9LekzSzyWtaEmlZq3Sgbu2SunQ/k0Y3pJmAGuBpcACYLmk0e/UrQIGI6IXqAF/LWnajmPMzKqg\n0c77bGBbRGyPiP3AeuCSUec8Dxz6COIc4P9FxIFyyzRroQ69TrgyOrR/jXbI84AdI453Av951Dl/\nA/xQ0nPAscDl5ZVnZmZjaRTek7nk4wbgsYioSfo94B8lLY6Iw778Y8WKFfT09ADQ3d1Nb2/vkdab\nj0O7gfktOgaKoqBWqw3/DFTmuOWv38jj+W1ej/Svr/vX3HErX7+iKBgYGAAYzsuxaKJL8iSdA/RH\nxNL68V8Bb0TEmhHn3Aesjoif1I9/AFwfERtHPVaMtZakSl0WKAn627BQf3Uvp2zba5hKf3V7B+5f\n2eoZediHXhrNvDcCp0rqkfQ7QB9w96hztgB/WF/kHcB7gH9rvmSzNunQmWlldGj/Jgzv+huPq4D7\ngSeB2yNis6RrJV1bP+1/AWdKehz4J+AvImJ3s4VNlz+DtnbtWs4880yOOuoorr766maflplZKRpe\n0hcR/wD8w6jb1o34+dfAsvJLo7W/ek3ysefNm8dnPvMZ7r//fvbt29fCgiyZDr1OuDI6tH++HruB\nSy+9FICNGzeyc+fOxNWYmQ3xx+MnqcpvMHW8Dp2ZVkaH9s/hPUmTnZGbmbWDw3uSvPOusA6dmVZG\nh/bP4T1J3nmb2XTiNywbOHjwIPv37+fAgQMcPHiQ119/na6uLmbMmJG6NCtLh34fdEv1py6g+rzz\nbuCmm25i1qxZrFmzhm9/+9scffTRrF69OnVZZtNctPGfB9q83vQw4cfjS13oCD8e344xRSueuz8e\n3zx/vDpvQ//fre7zg/Z+pcd4H4+ftmOTKv+P28ysWR6bmHXodcLVUaQuIAmHt5lZhhzeZr7SJHO1\n1AUk4fA2M8uQw9vMM+/MFakLSGJaXG3iTy+amR2Z5OHdqksCK3+tsJXHM+/M1VIXkITHJmZmGXJ4\nl8Vz03y5d5krUheQhMPbzCxDDu+yeG6aL/cuc7XUBSTh8DYzy5DDuyyem+bLvctckbqAJBzeZmYZ\ncniXxXPTfLl3maulLiAJh7eZWYYc3mXx3DRf7l3mitQFJOHwNjPLkMO7LJ6b5su9y1wtdQFJOLzN\nzDLk8C6L56b5cu8yV6QuIAmHt5lZhhzeZfHcNF/uXeZqqQtIwuFtZpYhh3dZPDfNl3uXuSJ1AUk4\nvM3MMtQwvCUtlbRF0lZJ149zTk3SoKSfSypKrzIHnpvmy73LXC11AUlM+AeIJc0A1gJ/CDwL/Kuk\nuyNi84hzuoGvAB+MiJ2Sjm9lwWZm1njnfTawLSK2R8R+YD1wyahz/gtwZ0TsBIiIX5dfZgY8N82X\ne5e5InUBSTQK73nAjhHHO+u3jXQqcJykByRtlHRlmQWamdnhJhybADGJx5gJ/AFwETALeEjSTyNi\na7PFZcVz03y5d5mrpS4giUbh/Sxw8ojjkxnafY+0A/h1ROwD9kn6EbAYOCy8V6xYQU9PDwDd3d30\n9vZSq9UAKIoCoLRjYOjX4fkjfqZCxww951a9fqmPk7++LT5O/fq2vH/Do4xqHrfy9SuKgoGBAYDh\nvByLIsbfXEvqAp5iaFf9HPAIsHzUG5a/z9Cbmh8E3go8DPRFxJOjHismWqtskqC/bcu9+T8U7dAP\n7Xw928m9y5skJvdLe1kK2rv7Vlv7J4mI0OjbJ9x5R8QBSauA+4EZwC0RsVnStfX710XEFknfBzYB\nbwB/Mzq4zcysXBPuvEtdqOo773brr+7uzb3LW/t33u02PXbe/oSlmVmGHN5l8bXC+XLvMlekLiAJ\nh7eZWYYc3mXxtcL5cu8yV0tdQBIObzOzDDm8y+K5ab7cu8wVqQtIwuFtZpYhh3dZPDfNl3uXuVrq\nApJweJuZZcjhXRbPTfPl3mWuSF1AEg5vM7MMObzL4rlpvty7zNVSF5BEo+/zNkujP3UBZtObd95l\n8dy0ZNHGfx5o83pWriJ1AUk4vM3MMuTwLovnphmrpS7AmlJLXUASDm8zsww5vMvimXfGitQFWFOK\n1AUk4fA2M8uQw7ssnnlnrJa6AGtKLXUBSTi8zcwy5PAui2feGStSF2BNKVIXkITD28wsQw7vsnjm\nnbFa6gKsKbXUBSTh8DYzy5DDuyyeeWesSF2ANaVIXUASDm8zsww5vMvimXfGaqkLsKbUUheQhMPb\nzCxDDu+yeOadsSJ1AdaUInUBSTi8zcwy5PAui2feGaulLsCaUktdQBIObzOzDDm8y+KZd8aK1AVY\nU4rUBSTh8DYzy5DDuyyeeWeslroAa0otdQFJNAxvSUslbZG0VdL1E5x3lqQDkj5abolmZjbahOEt\naQawFlgKLACWSzptnPPWAN8H1II6pz/PvDNWpC7AmlKkLiCJRjvvs4FtEbE9IvYD64FLxjjvk8Ad\nwL+XXJ+ZmY2hUXjPA3aMON5Zv22YpHkMBfrX6jdFadXlxDPvjNVSF2BNqaUuIIlG4T2ZIP4C8JcR\nEQyNTDpzbGJm1kZdDe5/Fjh5xPHJDO2+RzoDWC8J4HjgQ5L2R8Tdox9sxYoV9PT0ANDd3U1vby+1\nWg2AoigASjsGhubQ80f8TAuPHwJ+t43rMfScW/X6pT7+7RyzHceHfm7XeulfX/evueNWvn5FUTAw\nMAAwnJdj0dCGeZw7pS7gKeAi4DngEWB5RGwe5/xvAPdExF1j3BcTrVU2SdDftuXe/B+KduiHdr6e\n7TS0EWjncyto76/eqmzvwP0rfTWJiDhsojHhzjsiDkhaBdwPzABuiYjNkq6t37+uJdXmyDPvjNVS\nF2BNqaUuIIkJd96lLlT1nXe79XvnnS/vvPM2PXbe/oRlWXydd8aK1AVYU4rUBSTh8DYzy1C1xyYV\nV9Vfvf1rd97cv5JXm8oblvmr9v+AzKxzeWxSmiJ1ATZlReoCrClF6gKScHibmWWo4jPvao9Nqjo3\nde/y5v6VvJovFTQzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xdual7lzf3r+TVPPM2M6sO\nh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrUBdiUFakLsKYU\nqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xd\nual7lzf3r+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOr\nDod3aYrUBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7Cm\nFKkLSMLhbWaWIc+8s1Xdual7lzf3r+TVPPM2M6uOSYW3pKWStkjaKun6Me7/E0mPS9ok6SeSFpVf\n6nRXpC7ApqxIXYA1pUhdQBINw1vSDGAtsBRYACyXdNqo0/4NOD8iFgE3ATeXXaiZmf1Ww5m3pHOB\nGyNiaf34LwEi4v+Mc/5c4ImIOGnU7Z55l6q6c1P3Lm/uX8mrNTHzngfsGHG8s37beP4rcN+RlWdm\nZkeiaxLnTPo/MZIuBP4MOG+s+1esWEFPTw8A3d3d9Pb2UqvVACiKAqC04yEFUBvxMy08/gLQ28b1\nhp5zq16/1Metf/1GHh/6uV3rpX993b/mjlv5+hVFwcDAAMBwXo5lMmOTc4D+EWOTvwLeiIg1o85b\nBNwFLI2IbWM8TsXHJgUjg7X1qvurt3uXN/ev5NXGGZtMJry7gKeAi4DngEeA5RGxecQ57wJ+CFwR\nET8d53EqHt7tVt0AcO/y5v6VvNo44d1wbBIRByStAu4HZgC3RMRmSdfW718HfBaYC3xtqHHsj4iz\ny3wCZmb2W/6EZWkKqvyrWzu5d3lz/0pezZ+wNDOrDu+8s1Xd3Zt7lzf3r+TVvPM2M6sOh3dpitQF\n2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrUBdiUFakLsKYUqQtIwuFt\nZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xdual7lzf3\nr+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrU\nBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLh\nbWaWIc+8s1Xdual7lzf3r+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c3\n96/k1TzzNjOrDod3aYrUBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzq46G4S1p\nqaQtkrZKun6cc75Uv/9xSUvKLzMHReoCbMqK1AVYU4rUBSQxYXhLmgGsBZYCC4Dlkk4bdc6HgVMi\n4lTgGuBrLap1mnssdQE2Ze5d3jqzf4123mcD2yJie0TsB9YDl4w652LgmwAR8TDQLekdpVc67b2U\nugCbMvcub53Zv0bhPQ/YMeJ4Z/22Ruec1HxpZmY2nkbhPdm3VEe/E1rlt5rHsT11ATZl21MXYE3Z\nnrqAJLoa3P8scPKI45MZ2llPdM5J9dsOM3QJUTu1e71vtnW19r+e7eTe5c39a7VG4b0ROFVSD/Ac\n0AcsH3XO3cAqYL2kc4CXIuKF0Q801nWKZmY2NROGd0QckLQKuB+YAdwSEZslXVu/f11E3Cfpw5K2\nAa8CV7e8ajOzDte2T1iamVl5/AlL6yiSTpN0kaTZo25fmqommzxJ75O0oP5zTdL/lHRR6rpS8M67\nRJKujohvpK7DxibpU8BKYDOwBLguIv6uft9gRHTop4PzIOl/AxcyNMJ9ADgfuBf4I+CeiPh8wvLa\nzuFdIkk7IuLkxmdaCpJ+DpwTEXvrb8LfAXw7Ir7g8J7+JD0JLAJ+B3gBOCkiXpZ0NPBwRCxKWmCb\nNbraxEaR9MQEd5/QtkJsKhQRewEiYrukGnCnpP9E+69tsyP3HxFxADgg6ZcR8TJAROyT9Ebi2trO\n4X3kTmDou15eHOO+B9tcix2ZX0nqjYjHAOo78D8GbmFoR2fT2+uSZkXEa8AfHLpRUjfg8LaG7gVm\nR8Tg6Dsk/XOCemzyrgL2j7whIvZL+lPg5jQl2RG4ICJ+AxARI8O6C/jTNCWl45m3mVmGfKmgmVmG\nHN5mZhlyeJuZZcjhbZUh6aCkQUlPSNpQv/53vHP7Jf2PdtZnViaHt1XJaxGxJCJOB/4D+PgE5/qd\nesuaw9uq6sfAKQCSrqr/cezHJB32xc+S/rukR+r333Foxy7psvou/rFDl4FKeq+kh+s7/MclndLW\nZ2VW50sFrTIkvRIRx0rqAu4E7mMoxO8Czo2I3ZK6I+IlSTcCeyPiryUdFxG7649xE/BCRKyVtAn4\nYEQ8L2lOROyR9CXgpxHxnfo6XYeuPTZrJ++8rUqOljQI/CtDfxvrb4H3AxsOhXNEjPXXak+X9C/1\nsP4TYEH99p8A35T03/jtB9oeAm6Q9BdAj4PbUvEnLK1K9o3+cilJwfjfW3Lo184B4OKIeKL+acsa\nQET8uaSzgY8Aj0o6IyJuk/RT4I+B+yRdGxEPtOC5mE3IO2+ruh8Cl0k6DkDS3BH3HQr12cAuSTOB\nK4bvlH4vIh6JiBuBfwdOkjQf2B4RXwb+Hji9HU/CbDTvvK1KDnsDJyKelLQa+GdJB4GfAX826vzP\nAA8zFNAPMxTmAP9X0qkMhfw/RcQmSdcDV0raDzwPrG7ZszGbgN+wNDPLkMcmZmYZcnibmWXI4W1m\nliGHt5lZhhzeZmYZcnibmWXI4W1mliGHt5lZhv4/9yaQ/2/WjuAAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that passenger class seems to have a significant impact on whether a passenger survived." + ] } ], "metadata": {}