From b0f14105ae171fdf10a4c33f76376c7a32fe5cee Mon Sep 17 00:00:00 2001 From: Donne Martin Date: Sun, 15 Mar 2015 04:07:05 -0400 Subject: [PATCH] Added snippets to analyze the Titanic Embarked feature. --- kaggle/titanic.ipynb | 564 ++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 557 insertions(+), 7 deletions(-) diff --git a/kaggle/titanic.ipynb b/kaggle/titanic.ipynb index 841956e..b291e14 100644 --- a/kaggle/titanic.ipynb +++ b/kaggle/titanic.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:c2fcf83578d0c021bd7138a746b44b1dfc462c3e8963594da8dc2234fb6f8447" + "signature": "sha256:9f535d1356013ca692a7c44ba8cd310ecd27dd9aca09238616c442798945979a" }, "nbformat": 3, "nbformat_minor": 0, @@ -651,7 +651,7 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAExhJREFUeJzt3W+MZXddx/H3t93WUpCuTc3238I2gQbWmGyjrEQsHCPW\nSqTtA9OWBGylMcZqSkg0bImx8UktPLExpomJYDco1Y1ILYL0n3sMPKANupXSpdImDmErO1WgLdA0\n6ZavD+ZsOw53d+7Mnju/vd95v5LJnnPn3Lkffj372XO/994hMhNJUl2ntA4gSZoti16SirPoJak4\ni16SirPoJak4i16Sipuq6CNiISK+EhEHIuLh4bazI+L+iPh6RNwXEVuXHX9zRDwREY9HxGWzCi9J\nWt20V/QJdJl5SWbuHm7bA9yfmRcDDw77RMRO4BpgJ3A5cEdE+MxBkhpZSwHHiv0rgL3D9l7gqmH7\nSuCuzHwxMxeAJ4HdSJKaWMsV/QMR8eWI+K3htm2ZuThsLwLbhu3zgUPL7nsIuOCEk0qS1mXLlMe9\nLTO/FRE/CdwfEY8v/2ZmZkQc73cp+HsWJKmRqYo+M781/Pk/EfFplkYxixFxbmYejojzgKeHw58C\nti+7+4XDbS9b5R8FSdIxZObKMfqqVh3dRMSZEfHjw/argcuAR4F7gOuGw64D7h627wGujYjTI+Ii\n4I3AwxPC+jXS1y233NI8Q6Uv19O1PFm/1muaK/ptwKcj4ujxf5OZ90XEl4F9EXEDsABcPRT4wYjY\nBxwEjgA35okk1KoWFhZaRyjF9RyPa3lyWLXoM/O/gF0Tbv8O8M5j3OdW4NYTTidJOmHR4mI7IrzI\nH1Hf93Rd1zpGGZXXc3hmrjmW65jRW/TSJrJU9P7dm1+xrqL3E6sF9H3fOkIprueY+tYBhEUvSeU5\nupE2EUc3887RjSRpAou+AGfK43I9x9S3DiAsekkqzxm9tIk4o593zuglSRNY9AU4Ux6X6zmmvnUA\nYdFLUnnO6KVNxBn9vHNGL0mawKIvwJnyuFzPMfWtAwiLXpLKc0YvbSLO6OedM3pJ0gQWfQHOlMfl\neo6pbx1AWPSSVJ4zemkTcUY/75zRS5ImsOgLcKY8LtdzTH3rAMKil6TynNFLm4gz+nnnjF6SNIFF\nX4Az5XG5nmPqWwcQFr0kleeMXtpEnNHPO2f0kqQJLPoCnCmPy/UcU986gLDoJak8Z/TSJuKMft45\no5ckTWDRF+BMeVyu55j61gGERS9J5U01o4+IU4EvA4cy890RcTbwd8DrgQXg6sx8Zjj2ZuD9wEvA\nTZl534Sf54xeasAZ/byb7Yz+A8BBXjlD9gD3Z+bFwIPDPhGxE7gG2AlcDtwRET5rkKSGVi3hiLgQ\neBfwl8DRf0muAPYO23uBq4btK4G7MvPFzFwAngR2jxlYP8qZ8rhczzH1rQOI6a7o/xT4A+CHy27b\nlpmLw/YisG3YPh84tOy4Q8AFJxpSkrR+W473zYj4NeDpzDwQEd2kYzIzI+J4Q7+J37v++uvZsWMH\nAFu3bmXXrl103dJDHL2icn+6/aO3nSx55n3/6G0nS57x//f1w58bsd9t8ONV2++BO4f9HazXcV+M\njYhbgfcBR4AzgNcC/wC8Begy83BEnAfsz8w3RcQegMy8bbj/54FbMvOhFT/XF2OlBnwxdt7N4MXY\nzPxwZm7PzIuAa4F/ycz3AfcA1w2HXQfcPWzfA1wbEadHxEXAG4GH1xpKa+NMeVyu55j61gHEKqOb\nCY5eCtwG7IuIGxjeXgmQmQcjYh9L79A5AtzopbskteXvupE2EUc3887fdSNJmsCiL8CZ8rhczzH1\nrQMIi16SynNGL20izujnnTN6SdIEFn0BzpTH5XqOqW8dQFj0klSeM3ppE3FGP++c0UuSJrDoC3Cm\nPC7Xc0x96wDCopek8pzRS5uIM/p554xekjSBRV+AM+VxuZ5j6lsHEBa9JJXnjF7aRJzRzztn9JKk\nCSz6Apwpj8v1HFPfOoCw6CWpPGf00ibijH7eOaOXJE1g0RfgTHlcrueY+tYBhEUvSeU5o5c2EWf0\n884ZvSRpAou+AGfK43I9x9S3DiAsekkqzxm9tIk4o593zuglSRNY9AU4Ux6X6zmmvnUAYdFLUnnO\n6KVNxBn9vHNGL0mawKIvwJnyuFzPMfWtAwiLXpLKO+6MPiLOAP4V+DHgdOAfM/PmiDgb+Dvg9cAC\ncHVmPjPc52bg/cBLwE2Zed+En+uMXmrAGf28W9+MftUXYyPizMx8PiK2AF8Efh+4AvjfzPxoRHwI\n+InM3BMRO4FPAm8BLgAeAC7OzB+u+JkWvdSART/vZvRibGY+P2yeDpwKfJelot873L4XuGrYvhK4\nKzNfzMwF4Elg91pDaW2cKY/L9RxT3zqAmKLoI+KUiHgEWAT2Z+ZjwLbMXBwOWQS2DdvnA4eW3f0Q\nS1f2kqRGtqx2wDB22RURZwH3RsQvrvh+RsTxngv6PHHGuq5rHaEU13NMXesAYoqiPyozn42IzwI/\nAyxGxLmZeTgizgOeHg57Cti+7G4XDrf9iOuvv54dO3YAsHXrVnbt2vXyX7CjT53dd9/98fdfGae4\nf/Lv98Cdw/4O1mu1d92cAxzJzGci4lXAvcAfA78CfDszPxIRe4CtK16M3c0rL8a+YeUrr74YO66+\n770KHVHl9dz4F2N7vKof0/pejF3tiv48YG9EnMLSPP8TmflgRBwA9kXEDQxvrwTIzIMRsQ84CBwB\nbrTRJaktf9eNtIn49sp55++6kSRNYNEX4Pu+x+V6jqlvHUBY9JJUnjN6aRNxRj/vnNFLkiaw6Atw\npjwu13NMfesAwqKXpPKc0UubiDP6eeeMXpI0gUVfgDPlcbmeY+pbBxAWvSSV54xe2kSc0c87Z/SS\npAks+gKcKY/L9RxT3zqAsOglqTxn9NIm4ox+3jmjlyRNYNEX4Ex5XK7nmPrWAYRFL0nlOaOXNhFn\n9PPOGb0kaQKLvgBnyuNyPcfUtw4gLHpJKs8ZvbSJOKOfd87oJUkTWPQFOFMel+s5pr51AGHRS1J5\nzuilTcQZ/bxzRi9JmsCiL8CZ8rhczzH1rQMIi16SynNGL20izujn3fpm9FtmEWUa3/jGN1o9tE7Q\ntm3bOOOMM1rHkDSlZlf0r3716zb8cat66aUXOPXUjSneF144zP79D3DppZduyOO10Pc9Xde1jjET\nG39F3wPdBj5edXN2Rf+DH3hFP56ejfrLdNZZdQteqsoXY0voWgcoperVfBtd6wBiiqKPiO0RsT8i\nHouIr0bETcPtZ0fE/RHx9Yi4LyK2LrvPzRHxREQ8HhGXzfJ/gCTp+Ka5on8R+GBm/hTwVuB3I+LN\nwB7g/sy8GHhw2CcidgLXADuBy4E7IsJnDjPVtw5Qiu+jH1PfOoCYougz83BmPjJsfx/4GnABcAWw\ndzhsL3DVsH0lcFdmvpiZC8CTwO6Rc0uSprSmK+2I2AFcAjwEbMvMxeFbi8C2Yft84NCyux1i6R8G\nzUzXOkApzujH1LUOINZQ9BHxGuBTwAcy83vLvzd8+ul479nyExqS1MhUb6+MiNNYKvlPZObdw82L\nEXFuZh6OiPOAp4fbnwK2L7v7hcNtK1wP7Bi2twK7eOVf/3740/3p9m9nI9fvwIEDvPTSSy9f+R6d\naVfZv/3229m1a9dJk2fs/Y09P49ub9TjVdvvgTuH/R2s16ofmIqlT1jsBb6dmR9cdvtHh9s+EhF7\ngK2ZuWd4MfaTLM3lLwAeAN6w/HceRER6kT+mno18H/1nPnOrH5iaU35gat7N7gNTbwPeC3wlIg4M\nt90M3Absi4gbgAXgaoDMPBgR+4CDwBHgRn+xzax1rQOUUrXk2+haBxBTFH1mfpFjz/LfeYz73Arc\negK5JEkj8f3tJfStA5Ti++jH1LcOICx6SSrPoi+hax2gFGf0Y+paBxANf3ul5tfb3/721hEkrYFX\n9CX0DR4zC3/tPwkyzOpro/UNHlMrWfSSVJxFX0LXOkAxXesAhXStAwiLXpLKs+hL6FsHKKZvHaCQ\nvnUAYdFLUnkWfQld6wDFdK0DFNK1DiAsekkqz6IvoW8doJi+dYBC+tYBhEUvSeVZ9CV0rQMU07UO\nUEjXOoCw6CWpPIu+hL51gGL61gEK6VsHEBa9JJVn0ZfQtQ5QTNc6QCFd6wDCopek8iz6EvrWAYrp\nWwcopG8dQFj0klSeRV9C1zpAMV3rAIV0rQMIi16SyrPoS+hbByimbx2gkL51AGHRS1J5Fn0JXesA\nxXStAxTStQ4gLHpJKs+iL6FvHaCYvnWAQvrWAYRFL0nlWfQldK0DFNO1DlBI1zqAsOglqTyLvoS+\ndYBi+tYBCulbBxAWvSSVZ9GX0LUOUEzXOkAhXesAwqKXpPJWLfqI+HhELEbEo8tuOzsi7o+Ir0fE\nfRGxddn3bo6IJyLi8Yi4bFbBtVzfOkAxfesAhfStA4jpruj/Crh8xW17gPsz82LgwWGfiNgJXAPs\nHO5zR0T4rEGSGlq1hDPzC8B3V9x8BbB32N4LXDVsXwnclZkvZuYC8CSwe5yoOraudYBiutYBCula\nBxDrn9Fvy8zFYXsR2DZsnw8cWnbcIeCCdT6GJGkEW070B2RmRkQe75DJN18P7Bi2twK7eOVf/374\n0/3p9m9nY9fv6G0b9Xgbvb/R61l5/+j2yZJn3vZ74M5hfwfrFZnH6+jhoIgdwGcy86eH/ceBLjMP\nR8R5wP7MfFNE7AHIzNuG4z4P3JKZD634eXnM/tc69GzUU+SzzrqUZ5/9IrX/+/XUHTkEG/vfrqfu\nWrYQZGas9V7rHd3cA1w3bF8H3L3s9msj4vSIuAh4I/DwOh9DU+taByimax2gkK51ADHF6CYi7gLe\nAZwTEd8E/gi4DdgXETcAC8DVAJl5MCL2AQeBI8CNOc1TBknSzEw1uhn9QR3djKzH0c2YeupeiTq6\nmW8bO7qRJM0Ji76ErnWAYrrWAQrpWgcQFr0klWfRl9C3DlBM3zpAIX3rAMKil6TyLPoSutYBiula\nByikax1AWPSSVJ5FX0LfOkAxfesAhfStAwiLXpLKs+hL6FoHKKZrHaCQrnUAYdFLUnkWfQl96wDF\n9K0DFNK3DiAsekkqz6IvoWsdoJiudYBCutYBhEUvSeVZ9CX0rQMU07cOUEjfOoCw6CWpPIu+hK51\ngGK61gEK6VoHEBa9JJVn0ZfQtw5QTN86QCF96wDCopek8iz6ErrWAYrpWgcopGsdQFj0klSeRV9C\n3zpAMX3rAIX0rQMIi16SyrPoS+haByimax2gkK51AGHRS1J5Fn0JfesAxfStAxTStw4gLHpJKs+i\nL6FrHaCYrnWAQrrWAYRFL0nlWfQl9K0DFNO3DlBI3zqAsOglqTyLvoSudYBiutYBCulaBxAWvSSV\nN5Oij4jLI+LxiHgiIj40i8fQcn3rAMX0rQMU0rcOIGZQ9BFxKvDnwOXATuA9EfHmsR9Hyz3SOkAx\nrud4XMuTwSyu6HcDT2bmQma+CPwtcOUMHkcve6Z1gGJcz/G4lieDWRT9BcA3l+0fGm6TJDWwZQY/\nM6c56LWvffcMHnpzev75A5x55r9tyGO98MJjG/I4bS20DlDIQusAYjZF/xSwfdn+dpau6v+f5577\npxk89Ob13HNPbfAjxgY/3kbb2zrADG30f7vKazkfInOqC/Dpf2DEFuA/gV8C/ht4GHhPZn5t1AeS\nJE1l9Cv6zDwSEb8H3AucCnzMkpekdka/opcknVxm9snYiPh4RCxGxKPHOebPhg9V/UdEXDKrLBWs\ntp4R0UXEsxFxYPj6w43OOC8iYntE7I+IxyLiqxFx0zGO8/ycwjTr6fk5vYg4IyIeiohHIuJgRPzJ\nMY6b/vzMzJl8AZcClwCPHuP77wI+N2z/HPClWWWp8DXFenbAPa1zzsMXcC6wa9h+DUuvKb15xTGe\nn+Oup+fn2tb0zOHPLcCXgF9Y8f01nZ8zu6LPzC8A3z3OIVcwvByfmQ8BWyNi26zyzLsp1hPqvxVm\nFJl5ODMfGba/D3wNOH/FYZ6fU5pyPcHzc2qZ+fyweTpLr3V+Z8Uhazo/W/5Ss0kfrLqwUZYKEvj5\n4Wnc5yJiZ+tA8yAidrD0TOmhFd/y/FyH46yn5+caRMQpEfEIsAjsz8yDKw5Z0/k5i/fRr8XKf+F9\nZXj9/h3YnpnPR8SvAncDFzfOdFKLiNcAfw98YLgS/ZFDVux7fh7HKuvp+bkGmflDYFdEnAXcGxFd\nZvYrDpv6/Gx5Rb/yg1UXDrdpHTLze0ef7mXmPwOnRcTZjWOdtCLiNOBTwF9n5t0TDvH8XIPV1tPz\nc30y81ngs8DPrvjWms7PlkV/D/AbABHxVuCZzFxsmGeuRcS2iIhhezdLb51dOdcTMKzTx4CDmXn7\nMQ7z/JzSNOvp+Tm9iDgnIrYO268Cfhk4sOKwNZ2fMxvdRMRdwDuAcyLim8AtwGkAmfkXmfm5iHhX\nRDwJ/AD4zVllqWC19QR+HfidiDgCPA9c2yrrHHgb8F7gKxFx9C/Qh4HXgefnOqy6nnh+rsV5wN6I\nOIWli/FPZOaDEfHbsL7z0w9MSVJx/l8JSlJxFr0kFWfRS1JxFr0kFWfRS1JxFr0kFWfRS1JxFr0k\nFfd/Ohn7L8QoQe4AAAAASUVORK5CYII=\n", "text": [ - "" + "" ] } ], @@ -763,7 +763,7 @@ "output_type": "pyout", "prompt_number": 11, "text": [ - "" + "" ] }, { @@ -771,7 +771,7 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEKCAYAAADdBdT9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGItJREFUeJzt3X+QnGWZ7vHvZSYrhJCaIOJKwDOpBV1iSCbLjwOFBY3s\natQNFJYwlbPAhj3ngGui/HFOLbuUylhUzjk51lb5I/4IW6xjKRJSgLsgrNSu8q6rIGxwICgJJC6p\nSoDgegKEQGSTcJ8/pjMOk5npyfTb/czz9vWpomre7pd+7u5bL565++0eRQRmZpaXt6QuwMzMjpzD\n28wsQw5vM7MMObzNzDLk8DYzy5DD28wsQw3DW9LfSnpB0hMTnPMlSVslPS5pSbklmpnZaJPZeX8D\nWDrenZI+DJwSEacC1wBfK6k2MzMbR8Pwjoh/AV6c4JSLgW/Wz30Y6Jb0jnLKMzOzsZQx854H7Bhx\nvBM4qYTHNTOzcZT1hqVGHfsz92ZmLdRVwmM8C5w84vik+m1vIsmBbmY2BRExeoNcSnjfDawC1ks6\nB3gpIl4Yp4ASlpscSdDftuXgAeDCNq7X397Xs53cu7y5f+WSDsttYBLhLek24ALgeEk7gBuBmQAR\nsS4i7pP0YUnbgFeBq0urOicvpS7Apsy9y1uH9q9heEfE8kmcs6qccszMbDL8Ccuy9KYuwKbMvctb\nh/bP4V2W+akLsClz7/LWof0r4w3Lpow3jC9Ff+seelqua1PzDB0bAJXQof1LHt5QrXfeW/ofIzOz\nOo9NzDpw11YpHdo/h7eZWYYc3mbPpC7AmtKh/Zu24b169WoWLlzI4sWLWbJkCY888kjTj3nPPfew\nZs2aEqqD2bNnl/I4ZmZTMS3esBztoYce4t5772VwcJCZM2eye/duXn/99Un9uwcOHKCra+yntWzZ\nMpYtW1ZKjX5jskI6dGZaGR3av2m58961axfHH388M2fOBOC4447jne98Jz09PezevRuAjRs3cuGF\nQ19o0N/fz5VXXsn73vc+rrrqKs4991yefPLJ4cer1Wo8+uijDAwM8MlPfpI9e/bQ09MzfP+rr77K\nu971Lg4ePMgvf/lLPvShD3HmmWdy/vnn89RTTwHwzDPPcO6557Jo0SI+/elPt+mVMDMb27QM7w98\n4APs2LGD97znPaxcuZIf/ehHwMS73S1btvCDH/yA73znO/T19bFhwwYAnn/+eXbt2sUZZ5wxfO6c\nOXPo7e2lKAoAvve977F06VJmzJjBNddcw5e//GU2btzI5z//eT7xiU8AcN1117Fy5Uo2bdrEiSee\n2KJnbkl06My0Mjq0f9MyvI855hgeffRRbr75Zt7+9rfT19fHwMDAuOdL4uKLL+atb30rAJdffjl3\n3HEHABs2bOCyyy477N/p6+vj9ttvB2D9+vX09fWxd+9eHnzwQS677DKWLFnCxz/+cXbt2gXAgw8+\nyPLlQ1/zcsUVV5T5dM3Mjti0nHkDvOUtb+GCCy7gggsu4PTTT2dgYICuri7eeOMNAH7zm9+86fxZ\ns2YN/3ziiSfytre9jSeeeIINGzawbt064M0792XLlnHDDTfw4osv8rOf/Yz3v//9vPLKK8ydO5fB\nwcE2PEObNjp0ZloZHdq/abnzfvrpp9m6devw8eDgID09PfT09LBx40YA7rzzzuH7x/qEZl9fH2vW\nrGHPnj0sXLjwsPNmz57NWWedxac+9SmWLVuGJObMmcP8+fOHd+0RwaZNmwA477zzWL9+PQC33npr\nyc/YzOzITMvw3rt3LytWrOC9730vixcvZsuWLXzuc5/jxhtv5LrrruOss86iq6treCct6bB5+Mc+\n9jFuv/12Lr/88uHbRp/X19c3PCM/5NZbb+WWW26ht7eXhQsXcvfddwPwxS9+ka985SssWrSI5557\nzlebVEmHzkwro0P7p3Z9r4ikGGstSdX7bpP+NizUX63vhBmp7X+Jpd1fbNRf3d6B+1e2ekYetluc\nljtvs7bq0JlpZXRo/xzeZmYZcnibdejMtDI6tH8ObzOzDDm8zTp0ZloZHdo/h7eZWYYc3mYdOjOt\njA7tn8PbzCxD0za8D30aspX/TNbu3bu59NJLmT17Nj09Pdx2220tfObWdh06M62MDu3ftP1iqiGt\n/BTT5MN75cqVHHXUUfzqV79icHCQj3zkIyxevJgFCxa0sD4zs/FN2533dPHqq69y1113cdNNNzFr\n1izOO+88LrnkEr71rW+lLs3K0qEz08ro0P45vBt4+umn6erq4pRTThm+bfHixfziF79IWJWZdTqH\ndwN79+5lzpw5b7rt2GOP5ZVXXklUkZWuQ2emldGh/XN4NzB79mz27Nnzpttefvlljj322EQVmZk5\nvBt697vfzYEDB9i2bdvwbY8//vjwH3iwCujQmWlldGj/HN4NHHPMMXz0ox/ls5/9LK+99ho//vGP\nueeee7jyyitTl2ZmHczhPQlf/epX2bdvHyeccAJXXHEFX//61znttNNSl2Vl6dCZaWV0aP+m+XXe\n0+NPjc2dO5fvfve7qcswMxs2bcO7yn8myqaZdv8ZLStXh/bPYxMzsww1DG9JSyVtkbRV0vVj3H+8\npO9LekzSzyWtaEmlZq3Sgbu2SunQ/k0Y3pJmAGuBpcACYLmk0e/UrQIGI6IXqAF/LWnajmPMzKqg\n0c77bGBbRGyPiP3AeuCSUec8Dxz6COIc4P9FxIFyyzRroQ69TrgyOrR/jXbI84AdI453Av951Dl/\nA/xQ0nPAscDl5ZVnZmZjaRTek7nk4wbgsYioSfo94B8lLY6Iw778Y8WKFfT09ADQ3d1Nb2/vkdab\nj0O7gfktOgaKoqBWqw3/DFTmuOWv38jj+W1ej/Svr/vX3HErX7+iKBgYGAAYzsuxaKJL8iSdA/RH\nxNL68V8Bb0TEmhHn3Aesjoif1I9/AFwfERtHPVaMtZakSl0WKAn627BQf3Uvp2zba5hKf3V7B+5f\n2eoZediHXhrNvDcCp0rqkfQ7QB9w96hztgB/WF/kHcB7gH9rvmSzNunQmWlldGj/Jgzv+huPq4D7\ngSeB2yNis6RrJV1bP+1/AWdKehz4J+AvImJ3s4VNlz+DtnbtWs4880yOOuoorr766maflplZKRpe\n0hcR/wD8w6jb1o34+dfAsvJLo7W/ek3ysefNm8dnPvMZ7r//fvbt29fCgiyZDr1OuDI6tH++HruB\nSy+9FICNGzeyc+fOxNWYmQ3xx+MnqcpvMHW8Dp2ZVkaH9s/hPUmTnZGbmbWDw3uSvPOusA6dmVZG\nh/bP4T1J3nmb2XTiNywbOHjwIPv37+fAgQMcPHiQ119/na6uLmbMmJG6NCtLh34fdEv1py6g+rzz\nbuCmm25i1qxZrFmzhm9/+9scffTRrF69OnVZZtNctPGfB9q83vQw4cfjS13oCD8e344xRSueuz8e\n3zx/vDpvQ//fre7zg/Z+pcd4H4+ftmOTKv+P28ysWR6bmHXodcLVUaQuIAmHt5lZhhzeZr7SJHO1\n1AUk4fA2M8uQw9vMM+/MFakLSGJaXG3iTy+amR2Z5OHdqksCK3+tsJXHM+/M1VIXkITHJmZmGXJ4\nl8Vz03y5d5krUheQhMPbzCxDDu+yeG6aL/cuc7XUBSTh8DYzy5DDuyyem+bLvctckbqAJBzeZmYZ\ncniXxXPTfLl3maulLiAJh7eZWYYc3mXx3DRf7l3mitQFJOHwNjPLkMO7LJ6b5su9y1wtdQFJOLzN\nzDLk8C6L56b5cu8yV6QuIAmHt5lZhhzeZfHcNF/uXeZqqQtIwuFtZpYhh3dZPDfNl3uXuSJ1AUk4\nvM3MMtQwvCUtlbRF0lZJ149zTk3SoKSfSypKrzIHnpvmy73LXC11AUlM+AeIJc0A1gJ/CDwL/Kuk\nuyNi84hzuoGvAB+MiJ2Sjm9lwWZm1njnfTawLSK2R8R+YD1wyahz/gtwZ0TsBIiIX5dfZgY8N82X\ne5e5InUBSTQK73nAjhHHO+u3jXQqcJykByRtlHRlmQWamdnhJhybADGJx5gJ/AFwETALeEjSTyNi\na7PFZcVz03y5d5mrpS4giUbh/Sxw8ojjkxnafY+0A/h1ROwD9kn6EbAYOCy8V6xYQU9PDwDd3d30\n9vZSq9UAKIoCoLRjYOjX4fkjfqZCxww951a9fqmPk7++LT5O/fq2vH/Do4xqHrfy9SuKgoGBAYDh\nvByLIsbfXEvqAp5iaFf9HPAIsHzUG5a/z9Cbmh8E3go8DPRFxJOjHismWqtskqC/bcu9+T8U7dAP\n7Xw928m9y5skJvdLe1kK2rv7Vlv7J4mI0OjbJ9x5R8QBSauA+4EZwC0RsVnStfX710XEFknfBzYB\nbwB/Mzq4zcysXBPuvEtdqOo773brr+7uzb3LW/t33u02PXbe/oSlmVmGHN5l8bXC+XLvMlekLiAJ\nh7eZWYYc3mXxtcL5cu8yV0tdQBIObzOzDDm8y+K5ab7cu8wVqQtIwuFtZpYhh3dZPDfNl3uXuVrq\nApJweJuZZcjhXRbPTfPl3mWuSF1AEg5vM7MMObzL4rlpvty7zNVSF5BEo+/zNkujP3UBZtObd95l\n8dy0ZNHGfx5o83pWriJ1AUk4vM3MMuTwLovnphmrpS7AmlJLXUASDm8zsww5vMvimXfGitQFWFOK\n1AUk4fA2M8uQw7ssnnlnrJa6AGtKLXUBSTi8zcwy5PAui2feGStSF2BNKVIXkITD28wsQw7vsnjm\nnbFa6gKsKbXUBSTh8DYzy5DDuyyeeWesSF2ANaVIXUASDm8zsww5vMvimXfGaqkLsKbUUheQhMPb\nzCxDDu+yeOadsSJ1AdaUInUBSTi8zcwy5PAui2feGaulLsCaUktdQBIObzOzDDm8y+KZd8aK1AVY\nU4rUBSTh8DYzy5DDuyyeeWeslroAa0otdQFJNAxvSUslbZG0VdL1E5x3lqQDkj5abolmZjbahOEt\naQawFlgKLACWSzptnPPWAN8H1II6pz/PvDNWpC7AmlKkLiCJRjvvs4FtEbE9IvYD64FLxjjvk8Ad\nwL+XXJ+ZmY2hUXjPA3aMON5Zv22YpHkMBfrX6jdFadXlxDPvjNVSF2BNqaUuIIlG4T2ZIP4C8JcR\nEQyNTDpzbGJm1kZdDe5/Fjh5xPHJDO2+RzoDWC8J4HjgQ5L2R8Tdox9sxYoV9PT0ANDd3U1vby+1\nWg2AoigASjsGhubQ80f8TAuPHwJ+t43rMfScW/X6pT7+7RyzHceHfm7XeulfX/evueNWvn5FUTAw\nMAAwnJdj0dCGeZw7pS7gKeAi4DngEWB5RGwe5/xvAPdExF1j3BcTrVU2SdDftuXe/B+KduiHdr6e\n7TS0EWjncyto76/eqmzvwP0rfTWJiDhsojHhzjsiDkhaBdwPzABuiYjNkq6t37+uJdXmyDPvjNVS\nF2BNqaUuIIkJd96lLlT1nXe79XvnnS/vvPM2PXbe/oRlWXydd8aK1AVYU4rUBSTh8DYzy1C1xyYV\nV9Vfvf1rd97cv5JXm8oblvmr9v+AzKxzeWxSmiJ1ATZlReoCrClF6gKScHibmWWo4jPvao9Nqjo3\nde/y5v6VvJovFTQzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xdual7lzf3r+TVPPM2M6sO\nh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrUBdiUFakLsKYU\nqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xd\nual7lzf3r+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOr\nDod3aYrUBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7Cm\nFKkLSMLhbWaWIc+8s1Xdual7lzf3r+TVPPM2M6uOSYW3pKWStkjaKun6Me7/E0mPS9ok6SeSFpVf\n6nRXpC7ApqxIXYA1pUhdQBINw1vSDGAtsBRYACyXdNqo0/4NOD8iFgE3ATeXXaiZmf1Ww5m3pHOB\nGyNiaf34LwEi4v+Mc/5c4ImIOGnU7Z55l6q6c1P3Lm/uX8mrNTHzngfsGHG8s37beP4rcN+RlWdm\nZkeiaxLnTPo/MZIuBP4MOG+s+1esWEFPTw8A3d3d9Pb2UqvVACiKAqC04yEFUBvxMy08/gLQ28b1\nhp5zq16/1Metf/1GHh/6uV3rpX993b/mjlv5+hVFwcDAAMBwXo5lMmOTc4D+EWOTvwLeiIg1o85b\nBNwFLI2IbWM8TsXHJgUjg7X1qvurt3uXN/ev5NXGGZtMJry7gKeAi4DngEeA5RGxecQ57wJ+CFwR\nET8d53EqHt7tVt0AcO/y5v6VvNo44d1wbBIRByStAu4HZgC3RMRmSdfW718HfBaYC3xtqHHsj4iz\ny3wCZmb2W/6EZWkKqvyrWzu5d3lz/0pezZ+wNDOrDu+8s1Xd3Zt7lzf3r+TVvPM2M6sOh3dpitQF\n2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrUBdiUFakLsKYUqQtIwuFt\nZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLhbWaWIc+8s1Xdual7lzf3\nr+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c396/k1TzzNjOrDod3aYrU\nBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzqw6Hd2mK1AXYlBWpC7CmFKkLSMLh\nbWaWIc+8s1Xdual7lzf3r+TVPPM2M6sOh3dpitQF2JQVqQuwphSpC0jC4W1mliHPvLNV3bmpe5c3\n96/k1TzzNjOrDod3aYrUBdiUFakLsKYUqQtIwuFtZpYhz7yzVd25qXuXN/ev5NU88zYzq46G4S1p\nqaQtkrZKun6cc75Uv/9xSUvKLzMHReoCbMqK1AVYU4rUBSQxYXhLmgGsBZYCC4Dlkk4bdc6HgVMi\n4lTgGuBrLap1mnssdQE2Ze5d3jqzf4123mcD2yJie0TsB9YDl4w652LgmwAR8TDQLekdpVc67b2U\nugCbMvcub53Zv0bhPQ/YMeJ4Z/22Ruec1HxpZmY2nkbhPdm3VEe/E1rlt5rHsT11ATZl21MXYE3Z\nnrqAJLoa3P8scPKI45MZ2llPdM5J9dsOM3QJUTu1e71vtnW19r+e7eTe5c39a7VG4b0ROFVSD/Ac\n0AcsH3XO3cAqYL2kc4CXIuKF0Q801nWKZmY2NROGd0QckLQKuB+YAdwSEZslXVu/f11E3Cfpw5K2\nAa8CV7e8ajOzDte2T1iamVl5/AlL6yiSTpN0kaTZo25fmqommzxJ75O0oP5zTdL/lHRR6rpS8M67\nRJKujohvpK7DxibpU8BKYDOwBLguIv6uft9gRHTop4PzIOl/AxcyNMJ9ADgfuBf4I+CeiPh8wvLa\nzuFdIkk7IuLkxmdaCpJ+DpwTEXvrb8LfAXw7Ir7g8J7+JD0JLAJ+B3gBOCkiXpZ0NPBwRCxKWmCb\nNbraxEaR9MQEd5/QtkJsKhQRewEiYrukGnCnpP9E+69tsyP3HxFxADgg6ZcR8TJAROyT9Ebi2trO\n4X3kTmDou15eHOO+B9tcix2ZX0nqjYjHAOo78D8GbmFoR2fT2+uSZkXEa8AfHLpRUjfg8LaG7gVm\nR8Tg6Dsk/XOCemzyrgL2j7whIvZL+lPg5jQl2RG4ICJ+AxARI8O6C/jTNCWl45m3mVmGfKmgmVmG\nHN5mZhlyeJuZZcjhbZUh6aCkQUlPSNpQv/53vHP7Jf2PdtZnViaHt1XJaxGxJCJOB/4D+PgE5/qd\nesuaw9uq6sfAKQCSrqr/cezHJB32xc+S/rukR+r333Foxy7psvou/rFDl4FKeq+kh+s7/MclndLW\nZ2VW50sFrTIkvRIRx0rqAu4E7mMoxO8Czo2I3ZK6I+IlSTcCeyPiryUdFxG7649xE/BCRKyVtAn4\nYEQ8L2lOROyR9CXgpxHxnfo6XYeuPTZrJ++8rUqOljQI/CtDfxvrb4H3AxsOhXNEjPXXak+X9C/1\nsP4TYEH99p8A35T03/jtB9oeAm6Q9BdAj4PbUvEnLK1K9o3+cilJwfjfW3Lo184B4OKIeKL+acsa\nQET8uaSzgY8Aj0o6IyJuk/RT4I+B+yRdGxEPtOC5mE3IO2+ruh8Cl0k6DkDS3BH3HQr12cAuSTOB\nK4bvlH4vIh6JiBuBfwdOkjQf2B4RXwb+Hji9HU/CbDTvvK1KDnsDJyKelLQa+GdJB4GfAX826vzP\nAA8zFNAPMxTmAP9X0qkMhfw/RcQmSdcDV0raDzwPrG7ZszGbgN+wNDPLkMcmZmYZcnibmWXI4W1m\nliGHt5lZhhzeZmYZcnibmWXI4W1mliGHt5lZhv4/9yaQ/2/WjuAAAAAASUVORK5CYII=\n", "text": [ - "" + "" ] } ], @@ -995,7 +995,7 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFZZJREFUeJzt3X+sZHV9xvH3Ayu12OCV0CywoJdWULepLjSsba3h2iLZ\nmgqkTUBbLSu0aUqqmMbWXRNF00iBf0qbhqYhKvuHoBt/gkHcBfm2tlEolkVk3cJab8JF9yIoQoU0\nu/LpH3Ouc5wOe+fe3ZnPd84+r2Sz55w5M/Pwzb2fPfeZmYsiAjMz666jsgOYmdl4edCbmXWcB72Z\nWcd50JuZdZwHvZlZx3nQm5l13EiDXtKMpE9J+pak3ZJeK+l4STslPSRph6SZ1vlbJT0saY+k88YX\n38zMljPqFf3fA7dFxKuAVwN7gC3Azog4A7iz2UfSeuBiYD2wCbhekn9yMDNLsuwAlvRi4PUR8VGA\niDgQET8Czge2NadtAy5sti8Abo6I/RExD+wFNh7u4GZmNppRrrRPA74v6WOS/lPSDZJeBKyNiMXm\nnEVgbbN9MrDQuv8CsO6wJTYzsxUZZdCvAc4Cro+Is4Af09Q0S6L3exQO9rsU/HsWzMySrBnhnAVg\nISL+o9n/FLAV2CfpxIjYJ+kk4LHm9keBU1v3P6U59lOSPPjNzFYhIrTS+yx7RR8R+4BHJJ3RHDoX\neBC4FbikOXYJ8Llm+xbgLZKOkXQacDpwz5DH9Z8IrrzyyvQMtfzxWngtvBYH/7Nao1zRA7wT+Lik\nY4BvA+8Ajga2S7oMmAcuagb4bknbgd3AAeDyOJSEHTc/P58doRpeiz6vRZ/X4tCNNOgj4n7g7CE3\nnfs8518FXHUIuczM7DDx+9uTbd68OTtCNbwWfV6LPq/FoVNGqyLJbY6Z2QpJIsbxYqyNVyklO0I1\nvBZ9Xos+r8Wh86A3M+s4VzdmA6QV/2RsNjGrqW5GfXul2RHGFyJWo9VdhLi6Seb+sc9r0VayA1Sk\nZAeYeh70ZmYd547ebECvo/fXp9XIb680M7MhPOiTuZfu81q0lewAFSnZAaaeB72ZWce5ozcb4I7e\n6uWO3szMhvCgT+Zeus9r0VayA1SkZAeYeh70ZmYd547ebIA7equXO3ozMxvCgz6Ze+k+r0VbyQ5Q\nkZIdYOp50JuZdZw7erMB7uitXu7ozcxsCA/6ZO6l+7wWbSU7QEVKdoCp50FvZtZx7ujNBrijt3q5\nozczsyE86JO5l+7zWrSV7AAVKdkBpp4HvZlZx43U0UuaB54CfgLsj4iNko4HPgm8DJgHLoqIJ5vz\ntwKXNue/KyJ2DDyeO3qrljt6q9d4O/oA5iLizIjY2BzbAuyMiDOAO5t9JK0HLgbWA5uA6yX5Jwcz\nsyQrGcCD/4qcD2xrtrcBFzbbFwA3R8T+iJgH9gIbsaHcS/d5LdpKdoCKlOwAU28lV/R3SLpX0p82\nx9ZGxGKzvQisbbZPBhZa910A1h1yUjMzW5U1I573uoj4nqRfBHZK2tO+MSJC0sFKTReez2Nubi47\nQjW8Fm1z2QEqMpcdYOqNNOgj4nvN39+X9Fl6VcyipBMjYp+kk4DHmtMfBU5t3f2U5tjP2Lx5M7Oz\nswDMzMywYcOGn36jL/0I733vZ+z3FPoDpjR/e9/7k94vwI3N/iyrtey7biQdCxwdEU9LehGwA/gQ\ncC7wRERcI2kLMBMRW5oXY2+i94/BOuAO4OXtt9n4XTd9pRRfyTZqWYs63nVT8JXskoLXYsnq3nUz\nyhX9WuCzvS9+1gAfj4gdku4Ftku6jObtlQARsVvSdmA3cAC43FPdzCyPf9eN2YA6rujNhvHvujEz\nsyE86JP5veN9Xou2kh2gIiU7wNTzoDcz6zh39GYD3NFbvdzRm5nZEB70ydxL93kt2kp2gIqU7ABT\nz4PezKzj3NGbDXBHb/VyR29mZkN40CdzL93ntWgr2QEqUrIDTD0PejOzjnNHbzbAHb3Vyx29mZkN\n4UGfzL10n9eirWQHqEjJDjD1POjNzDrOHb3ZAHf0Vi939GZmNoQHfTL30n1ei7aSHaAiJTvA1POg\nNzPrOHf0ZgPc0Vu93NGbmdkQHvTJ3Ev3eS3aSnaAipTsAFPPg97MrOPc0ZsNcEdv9XJHb2ZmQ3jQ\nJ3Mv3ee1aCvZASpSsgNMPQ96M7OOc0dvNsAdvdXLHb2ZmQ0x0qCXdLSk+yTd2uwfL2mnpIck7ZA0\n0zp3q6SHJe2RdN64gneFe+k+r0VbyQ5QkZIdYOqNekV/BbCb/s+zW4CdEXEGcGezj6T1wMXAemAT\ncL0k/9RgZpZo2Y5e0inAjcCHgb+MiDdL2gOcExGLkk4ESkS8UtJW4LmIuKa57+3AByPiawOP6Y7e\nquWO3uo1vo7+74C/Ap5rHVsbEYvN9iKwttk+GVhonbcArFtpKDMzO3zWHOxGSb8HPBYR90maG3ZO\nRISkg13+DL1t8+bNzM7OAjAzM8OGDRuYm+s9xVJXeyTst3vpGvJk7i8dy87TU4C51jYT3t8FvDvx\n+Wvavw7YUFGeSe4XeoUKwCyrddDqRtJVwNuBA8ALgeOAzwBnA3MRsU/SScBdTXWzBSAirm7ufztw\nZUTcPfC4rm4apZSBAXPkqmUt6qhuCv1v/CNdwWuxZHXVzcjvo5d0DvCepqO/FngiIq5phvtMRGxp\nXoy9CdhIr7K5A3j54FT3oLea1THozYZZ3aA/aHUzxNJX/9XAdkmXAfPARQARsVvSdnrv0DkAXO6J\nbmaWy5+MTVZLXVGDWtaijiv6guuKJQWvxRJ/MtbMzIbwFb3ZgDqu6M2G8RW9mZkN4UGfzL/fpc9r\n0VayA1SkZAeYeh70ZmYd547ebIA7equXO3ozMxvCgz6Ze+k+r0VbyQ5QkZIdYOp50JuZdZw7erMB\n7uitXu7ozcxsCA/6ZO6l+7wWbSU7QEVKdoCp50FvZtZx7ujNBrijt3q5ozczsyE86JO5l+7zWrSV\n7AAVKdkBpp4HvZlZx7mjNxvgjt7q5Y7ezMyG8KBP5l66z2vRVrIDVKRkB5h6HvRmZh3njt5sgDt6\nq5c7ejMzG8KDPpl76T6vRVvJDlCRkh1g6nnQm5l1nDt6swHu6K1eq+vo14wjyije//4PZD21mdkR\nJe2KHj408eet03eA07JDVCJ/LY466m947rkD5F/RF2AuOUMtCl6LJWO4opf0QuBfgJ8DjgE+HxFb\nJR0PfBJ4GTAPXBQRTzb32QpcCvwEeFdE7Bj+6L6i7yn4i3hJIXstjjrq6mbQm3XHslf0ko6NiGck\nrQH+DXgPcD7weERcK+m9wEsiYouk9cBNwNnAOuAO4IyIeG7gMSP/isns/1uz5lgOHHgWf31ancb0\nPvqIeKbZPAY4GvghvUG/rTm+Dbiw2b4AuDki9kfEPLAX2LjSUGZmdvgsO+glHSVpF7AI3BURDwJr\nI2KxOWURWNtsnwwstO6+QO/K3p5XyQ5QkZIdoCIlO0BFSnaAqbfsu26a2mWDpBcDX5L0hoHbo1fF\nPP9DDD+8GZhttmeADfT72dL87f0ja59lbp/U/tKxrOcvwK7k569pf1dleSa5X4Abm/1ZVmtF77qR\n9H7gWeBPgLmI2CfpJHpX+q+UtAUgIq5uzr8duDIi7h54HHf0ViV39Fa3MXT0kk6QNNNs/zzwRuA+\n4Bbgkua0S4DPNdu3AG+RdIyk04DTgXtWGsrMzA6f5Tr6k4AvNx393cCtEXEncDXwRkkPAb/d7BMR\nu4HtwG7gi8Dl/gjsckp2gIqU7AAVKdkBKlKyA0y9g3b0EfEAcNaQ4z8Azn2e+1wFXHVY0pmZ2SFL\n/GSsL/StPu7orW7+ffRmZjaEB326kh2gIiU7QEVKdoCKlOwAU8+D3sys49zRm7W4o7e6uaM3M7Mh\nPOjTlewAFSnZASpSsgNUpGQHmHoe9GZmHeeO3qzFHb3VzR29mZkN4UGfrmQHqEjJDlCRkh2gIiU7\nwNTzoDcz6zh39GYt7uitbu7ozcxsCA/6dCU7QEVKdoCKlOwAFSnZAaaeB72ZWce5ozdrcUdvdXNH\nb2ZmQ3jQpyvZASpSsgNUpGQHqEjJDjD1POjNzDrOHb1Zizt6q5s7ejMzG8KDPl3JDlCRkh2gIiU7\nQEVKdoCp50FvZtZx7ujNWtzRW93c0ZuZ2RAe9OlKdoCKlOwAFSnZASpSsgNMPQ96M7OOW3bQSzpV\n0l2SHpT0TUnvao4fL2mnpIck7ZA007rPVkkPS9oj6bxx/gdMv7nsABWZyw5QkbnsABWZyw4w9ZZ9\nMVbSicCJEbFL0i8AXwcuBN4BPB4R10p6L/CSiNgiaT1wE3A2sA64AzgjIp5rPaZfjLUq+cVYq9uY\nXoyNiH0RsavZ/h/gW/QG+PnAtua0bfSGP8AFwM0RsT8i5oG9wMaVBjtylOwAFSnZASpSsgNUpGQH\nmHor6uglzQJnAncDayNisblpEVjbbJ8MLLTutkDvHwYzM0uwZtQTm9rm08AVEfG01P/pISKiV8c8\nryG3bQZmm+0ZYAP9Lq40fx8J+3OV5fF+/1h2Hpa5/UjZXzpWS55J7hfgxmZ/ltUa6QNTkl4AfAH4\nYkRc1xzbA8xFxD5JJwF3RcQrJW0BiIirm/NuB66MiLtbj+eO3qrkjt7qNqaOXr1L948Au5eGfOMW\n4JJm+xLgc63jb5F0jKTTgNOBe1Ya7MhRsgNUpGQHqEjJDlCRkh1g6o1S3bwOeBvwDUn3Nce2AlcD\n2yVdBswDFwFExG5J24HdwAHg8sj4PQtmZgb4d92Y/QxXN1Y3/64bMzMbwoM+XckOUJGSHaAiJTtA\nRUp2gKnnQW9m1nHu6M1a3NFb3dzRm5nZEB706Up2gIqU7AAVKdkBKlKyA0w9D3ozs45zR2/W4o7e\n6uaO3szMhvCgT1eyA1SkZAeoSMkOUJGSHWDqedCbmXWcO3qzFnf0Vjd39GZmNoQHfbqSHaAiJTtA\nRUp2gIqU7ABTz4PezKzj3NGbtbijt7q5ozczsyE86NOV7AAVKdkBKlKyA1SkZAeYeh70ZmYd547e\nrMUdvdXNHb2ZmQ3hQZ+uZAeoSMkOUJGSHaAiJTvA1POgNzPrOHf0Zi3u6K1u7ujNzGwID/p0JTtA\nRUp2gIqU7AAVKdkBpp4HvZlZx7mjN2txR291G1NHL+mjkhYlPdA6dryknZIekrRD0kzrtq2SHpa0\nR9J5Kw1kZmaH1yjVzceATQPHtgA7I+IM4M5mH0nrgYuB9c19rpfkeuigSnaAipTsABUp2QEqUrID\nTL1lh3BEfAX44cDh84FtzfY24MJm+wLg5ojYHxHzwF5g4+GJamZmq7Haq+21EbHYbC8Ca5vtk4GF\n1nkLwLpVPscRYi47QEXmsgNUZC47QEXmsgNMvUOuVaL3au7BXrnyq1pmZonWrPJ+i5JOjIh9kk4C\nHmuOPwqc2jrvlObYEJuB2WZ7BthA/1/u0vx9JOwvbdeSJ3N/6Vh2nqVjWc9fgF3AuxOfv6b96ziy\n58ONzf4sqzXS2yslzQK3RsSvNvvXAk9ExDWStgAzEbGleTH2Jnq9/DrgDuDlMfAkfntlW8E/mi4p\nZK9FPW+vLGSvRT0KXoslq3t75bKDXtLNwDnACfT6+A8Anwe2Ay8F5oGLIuLJ5vz3AZcCB4ArIuJL\nQx7Tg96qVM+gNxtmTIN+HDzorVYe9FY3/1KzKVWyA1SkZAeoSMkOUJGSHWDqedCbmXWcqxuzFlc3\nVjdXN2ZmNoQHfbqSHaAiJTtARUp2gIqU7ABTz4PezKzj3NGbtbijt7q5ozczsyE86NOV7AAVKdkB\nKlKyA1SkZAeYeh70ZmYd547erMUdvdXNHb2ZmQ3hQZ+uZAeoSMkOUJGSHaAiJTvA1POgNzPrOHf0\nZi3u6K1u7ujNzGwID/p0JTtARUp2gIqU7AAVKdkBpp4HvZlZx7mjN2txR291c0dvZmZDeNCnK9kB\nKlKyA1SkZAeoSMkOMPU86M3MOs4dvVmLO3qrmzt6MzMbwoM+XckOUJGSHaAiJTtARUp2gKnnQW9m\n1nHu6M1a3NFb3dzRm5nZEGMZ9JI2Sdoj6WFJ7x3Hc3RHyQ5QkZIdoCIlO0BFSnaAqXfYB72ko4F/\nBDYB64G3SnrV4X6e7tiVHaAiXos+r0Wf1+JQjeOKfiOwNyLmI2I/8AnggjE8T0c8mR2gIl6LPq9F\nn9fiUI1j0K8DHmntLzTHzMwswZoxPOZIb1c47rg3j+Gpp88zz9zHscd+PTtGFWpYi6ef/t/U5++b\nzw5QkfnsAFNvHIP+UeDU1v6p9K7qf8ZTT31hDE89nZ566tHsCNWoZy1W/A62MdiWHaAiXotDcdjf\nRy9pDfBfwO8A3wXuAd4aEd86rE9kZmYjOexX9BFxQNJfAF8CjgY+4iFvZpYn5ZOxZmY2OWP9ZOwo\nH5yS9A/N7fdLOnOceTIttxaS/qhZg29I+ndJr87IOQmjfqBO0tmSDkj6/Unmm6QRv0fmJN0n6ZuS\nyoQjTswI3yMnSLpd0q5mLTYnxBw7SR+VtCjpgYOcs7K5GRFj+UOvttkLzAIvoPeph1cNnPMm4LZm\n+7XA18aVJ/PPiGvxG8CLm+1NR/JatM77MvAF4A+ycyd+XcwADwKnNPsnZOdOXIsPAn+7tA7AE8Ca\n7OxjWIvXA2cCDzzP7Suem+O8oh/lg1Pn07ycHhF3AzOS1o4xU5Zl1yIivhoRP2p27wZOmXDGSRn1\nA3XvBD4FfH+S4SZslLX4Q+DTEbEAEBGPTzjjpIyyFt8Djmu2jwOeiIgDE8w4ERHxFeCHBzllxXNz\nnIN+lA9ODTuniwNupR8iuwy4bayJ8iy7FpLW0fsm/6fmUFdfSBrl6+J04HhJd0m6V9LbJ5ZuskZZ\nixuAX5H0XeB+4IoJZavNiufmON5Hv2TUb87BNyx38Zt65P8mSW8ALgVeN744qUZZi+uALRERkkQd\nb2ofh1HW4gXAWfTernws8FVJX4uIh8eabPJGWYv3AbsiYk7SLwM7Jb0mIp4ec7YarWhujnPQj/LB\nqcFzTmmOdc1IHyJrXoC9AdgUEQf70W2ajbIWvwZ8ojfjOQH4XUn7I+KWyUScmFHW4hHg8Yh4FnhW\n0r8CrwG6NuhHWYvfBD4MEBHflvQd4BXAvRNJWI8Vz81xVjf3AqdLmpV0DHAxMPiNegvwxwCSfh14\nMiIWx5gpy7JrIemlwGeAt0XE3oSMk7LsWkTEL0XEaRFxGr2e/s87OORhtO+RzwO/JeloScfSe/Ft\n94RzTsIoa7EHOBeg6aRfAfz3RFPWYcVzc2xX9PE8H5yS9GfN7f8cEbdJepOkvcCPgXeMK0+mUdYC\n+ADwEuCfmivZ/RGxMSvzuIy4FkeEEb9H9ki6HfgG8BxwQ0R0btCP+HVxFfAxSffTu0j964j4QVro\nMZF0M3AOcIKkR4Ar6VV4q56b/sCUmVnH+X8laGbWcR70ZmYd50FvZtZxHvRmZh3nQW9m1nEe9GZm\nHedBb2bWcR70ZmYd93/OoxplCDN6/wAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], @@ -1024,7 +1024,7 @@ "output_type": "pyout", "prompt_number": 17, "text": [ - "" + "" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAELCAYAAAAWWQdYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF2dJREFUeJzt3X+QXWV9x/H3J9kI1RADRpSEOMuUHxIxWQqkUh04gKMR\nBGqVrKmooXTAMVHacSr1F6x2KMM4naoENWjK+gcmZEQ70TJQfx3oSMQuRIIhgURhJgHirwAhGaBs\n+PaPvbvZ3N27d03u3nOePZ/XTGb2Oefk7vfmPvvJs997zrmKCMzMLC1Tii7AzMz+dA5vM7MEObzN\nzBLk8DYzS5DD28wsQQ5vM7MENQ1vSf8h6beSHhrjmK9I2irpQUmntrZEMzOrN56V9y3AokY7JZ0P\nHB8RJwBXAF9rUW1mZtZA0/COiP8Bnh7jkIuAb9WOvQ+YKel1rSnPzMxG04qe9xxg+7DxDuDYFjyu\nmZk10Ko3LFU39jX3ZmYTqKMFj/EEMHfY+NjatgNIcqCbmR2EiKhfILckvNcBy4E1kt4CPBMRv21Q\nQAu+3cSSBD1FVzEOPwXOKbqIcehJ43VPgedmi/WkMTelEbkNjCO8Ja0GzgZmSdoOXAtMA4iIlRFx\nh6TzJW0D9gKXtaxqa+yZogswa8Bzsy2ahndELBnHMctbU46ZmY2Hr7BMVVfRBZg14LnZFg7vVB1X\ndAFmDXhutoXDO1WPFV2AWQOem23h8DYzS5DDO1X+1dTKynOzLRzeZmYJcninyn1FKyvPzbZweJuZ\nJcjhnSr3Fa2sPDfbwuFtZpYgh3eq3Fe0svLcbAuHt5lZghzeqXJf0crKc7MtHN5mZglyeKfKfUUr\nK8/NtnB4m5klyOGdKvcVraw8N9vC4W1mliCHd6rcV7Sy8txsC4e3mVmCHN6pcl/Ryspzsy0c3mZm\nCXJ4p8p9RSsrz822cHibmSXI4Z0q9xWtrDw328LhbWaWIId3qtxXtLLy3GwLh7eZWYIc3qlyX9HK\nynOzLRzeZmYJcninyn1FKyvPzbZweJuZJcjhnSr3Fa2sPDfbwuFtZpYgh3eq3Fe0svLcbAuHt5lZ\ngpqGt6RFkrZI2irp6lH2z5J0p6RfSvqVpKUTUqkdyH1FKyvPzbYYM7wlTQVWAIuAecASSSfXHbYc\n2BARXUAG/Jukjgmo1czMapqF7EJgW0Q8DiBpDXAxsHnYMU8B82tfzwD+GBH9La7T6j2GVzhV1FN0\nAVYWzcJ7DrB92HgH8Jd1x3wD+ImkJ4EjgMWtK8/MDhRFFzAOOQO/hJedii7gkDQL7/HMlE8Dv4yI\nTNKfAz+UtCAinqs/cOnSpXR2dgIwc+ZMurq6yLIMgDzPAQofDxl8x/y4ko4Ht5WlnkbjmrK8vqmP\n9xscZyUcZyWrZ6xxbVSS1zfLMvI8p7e3F2AoL0ejiMb5LOktQE9ELKqNPwW8HBE3DDvmDuC6iPhZ\nbfxj4OqI6Kt7rBjre5WFJP9q2ko9kMLrngJJpLHyToWSmJuSiIgRvyY0O9ukDzhBUqekVwDdwLq6\nY7YAb699k9cBJwG/OfSSbUw+l9ZKKy+6gEoYs20SEf2SlgN3AVOBVRGxWdKVtf0rgX8FbpH0IAP/\nGXwyInZNcN1mZpU2Ztukpd/IbZNq6nHbpFXcNmm1yd02MTOzEnJ4p8o9byutvOgCKsHhbWaWIId3\nqnx1pZVWVnQBleDwNjNLkMM7Ve55W2nlRRdQCQ5vM7MEObxT5Z63lVZWdAGV4PA2M0uQwztV7nlb\naeVFF1AJDm8zswQ5vFPlnreVVlZ0AZXg8DYzS5DDO1XueVtp5UUXUAkObzOzBDm8U+Wet5VWVnQB\nleDwNjNLkMM7Ve55W2nlRRdQCQ5vM7MEObxT5Z63lVZWdAGV4PA2M0uQwztV7nlbaeVFF1AJDm8z\nswQ5vFPlnreVVlZ0AZXg8DYzS5DDO1XueVtp5UUXUAkObzOzBDm8U+Wet5VWVnQBleDwNjNLkMM7\nVe55W2nlRRdQCQ5vM7MEObxT5Z63lVZWdAGV4PA2M0uQwztV7nlbaeVFF1AJDm8zswQ1DW9JiyRt\nkbRV0tUNjskkbZD0K0l5y6u0kdzzttLKii6gEjrG2ilpKrACeDvwBPC/ktZFxOZhx8wEbgLeGRE7\nJM2ayILNzKz5ynshsC0iHo+Il4A1wMV1x/wtcHtE7ACIiD+0vkwbwT1vK6286AIqoVl4zwG2Dxvv\nqG0b7gTgKEk/ldQn6YOtLNDMzEYas20CxDgeYxrwF8B5wCuB9ZJ+HhFbD7U4G4N73lZaWdEFVEKz\n8H4CmDtsPJeB1fdw24E/RMTzwPOS7gEWACPCe+nSpXR2dgIwc+ZMurq6yLIMgDzPAQofDxlsSxzn\n8SGNa8ry+qY+3m9wnHl8SOPaqCSvb5Zl5HlOb28vwFBejkYRjRfXkjqARxhYVT8J/AJYUveG5RsZ\neFPzncBhwH1Ad0Q8XPdYMdb3KgtJ0FN0FePwGGmsvnsghdc9BZIY3y/DRctJY/WtJOamJCJC9dvH\nXHlHRL+k5cBdwFRgVURslnRlbf/KiNgi6U5gI/Ay8I364DYzs9Yac+Xd0m/klXc19Xjl3SrprLxT\nkfbK21dYmpklyOGdKp/nbaWVF11AJTi8zcwS5PBOVQpnmlhFZUUXUAkObzOzBDm8U+Wet5VWXnQB\nleDwNjNLkMM7Ve55W2llRRdQCQ5vM7MEObxT5Z63lVZedAGV4PA2M0uQwztV7nlbaWVFF1AJDm8z\nswQ5vFPlnreVVl50AZXg8DYzS5DDO1XueVtpZUUXUAkObzOzBDm8U+Wet5VWXnQBleDwNjNLkMM7\nVe55W2llRRdQCQ5vM7MEObxT5Z63lVZedAGV4PA2M0uQwztV7nlbaWVFF1AJDm8zswQ5vFPlnreV\nVl50AZXg8DYzS5DDO1XueVtpZUUXUAkObzOzBDm8U+Wet5VWXnQBleDwNjNLkMM7Ve55W2llRRdQ\nCQ5vM7MEObxT5Z63lVZedAGV4PA2M0uQwztV7nlbaWVFF1AJTcNb0iJJWyRtlXT1GMedIalf0t+0\ntkQzM6s3ZnhLmgqsABYB84Alkk5ucNwNwJ2AJqBOq+eet5VWXnQBldBs5b0Q2BYRj0fES8Aa4OJR\njvsY8B3g9y2uz8zMRtEsvOcA24eNd9S2DZE0h4FA/1ptU7SsOmvMPW8rrazoAiqhWXiPJ4i/BPxz\nRAQDLRO3TczMJlhHk/1PAHOHjecysPoe7jRgjSSAWcC7JL0UEevqH2zp0qV0dnYCMHPmTLq6usiy\nDIA8zwEKHw8Z7CkfV9LxeuD1Jaqn0bimLK9v6uP9BsdZCceDX5elnrHGtVFJXt8sy8jznN7eXoCh\nvByNBhbMDXZKHcAjwHnAk8AvgCURsbnB8bcA34+I746yL8b6XmUhCXqKrmIcHiON1kkPpPC6p2Bg\ngZTCv2VOGq0TJTE3JRERIzoaY668I6Jf0nLgLmAqsCoiNku6srZ/5YRUa82lENxWUVnRBVTCmCvv\nln4jr7yrqccr71ZJZ+WdirRX3r7CMlU+z9tKKy+6gEpweJuZJcjhnSr3vK20sqILqASHt5lZghze\nqXLP20orL7qASnB4m5klyOGdKve8rbSyoguoBIe3mVmCHN6pcs/bSisvuoBKcHibmSXI4Z0q97yt\ntLKiC6gEh7eZWYIc3qlyz9tKKy+6gEpweJuZJcjhnSr3vK20sqILqASHt5lZghzeqXLP20orL7qA\nSnB4m5klyOGdKve8rbSyoguoBIe3mVmCHN6pcs/bSisvuoBK6Ci6ALNGBj4tfXJJ4dPKLQ0O71RV\npOc9mcJuMv5nNLqs6AIqwW0TM7MEObxT5Z63lVZedAGV4PA2M0uQwztVFel5W4qyoguoBLXrDSFJ\nkcKbT9V5U6l9DvZ1lzTq373uuutYvXo1U6dOZcqUKaxcuZKFCxceUo3f//73efjhh7n66qsP6XEA\npk+fzp49e0Zsb/R8xmtgbpb/Zygdh/Z6tEtt3owIJod3nXR+QHLSWOEc/A/IaGG3fv16PvGJT3D3\n3Xczbdo0du3axYsvvsgxxxzT9PH6+/vp6Jj4E6yOOOIInnvuuRHbqxPeOZN9brZTo/B228SSsnPn\nTmbNmsW0adMAOOqoozjmmGPo7Oxk165dAPT19XHOOecA0NPTwwc/+EHe9ra38aEPfYgzzzyThx9+\neOjxsizj/vvvp7e3l4997GPs3r2bzs7Oof179+7lDW94A/v27ePXv/4173rXuzj99NM566yzeOSR\nRwB47LHHOPPMM5k/fz6f/exn2/QvYVXn8E5WVnQBhXjHO97B9u3bOemkk1i2bBn33HMPMHa7a8uW\nLfz4xz/m29/+Nt3d3axduxaAp556ip07d3LaaacNHTtjxgy6urrI8xyAH/zgByxatIipU6dyxRVX\ncOONN9LX18cXv/hFPvrRjwJw1VVXsWzZMjZu3Mjs2bMn6JmnJCu6gEpweFtSXvWqV3H//fdz8803\n89rXvpbu7m56e3sbHi+Jiy66iMMOOwyAxYsX853vfAeAtWvXcskll4z4O93d3dx2220ArFmzhu7u\nbvbs2cO9997LJZdcwqmnnspHPvIRdu7cCcC9997LkiVLALj00ktb+XTNGvIVlsnKqeoKZ8qUKZx9\n9tmcffbZvPnNb6a3t5eOjg5efvllAF544YUDjn/lK1859PXs2bN5zWtew0MPPcTatWtZuXIlcODK\n/cILL+TTn/40Tz/9NA888ADnnnsuzz33HEceeSQbNmxowzNMXU5V52Y7eeVtSXn00UfZunXr0HjD\nhg10dnbS2dlJX18fALfffvvQ/tHekOru7uaGG25g9+7dnHLKKSOOmz59OmeccQYf//jHufDCC5HE\njBkzOO6444ZW7RHBxo0bAXjrW9/KmjVrALj11ltb/IzNRufwTlZWdAGF2LNnD0uXLuVNb3oTCxYs\nYMuWLXz+85/n2muv5aqrruKMM86go6NjaCUtaUQ//H3vex+33XYbixcvHtpWf1x3d/dQj3zQrbfe\nyqpVq+jq6uKUU05h3bp1AHz5y1/mpptuYv78+Tz55JM+3bSic7PdfKpgnXROx0pFa08VTFl1ThVM\nRRrz65BOFZS0SNIWSVsljbiKQdIHJD0oaaOkn0ma34qibSx50QWYNZAXXUAlNA1vSVOBFcAiYB6w\nRNLJdYf9BjgrIuYD/wLc3OpCzcxsv/GsvBcC2yLi8Yh4CVgDXDz8gIhYHxHP1ob3Ace2tkwbKSu6\nALMGsqILqITxhPccYPuw8Y7atkYuB+44lKLMzGxs4znPe9wdfUnnAH8HvHW0/UuXLh269HjmzJl0\ndXWRZRnA0BVtRY/3GxxnJR1/CegqUT2NxrXRIb8ek8vknp+DX5elnrHGtVFJ8ifLMvI8H7rwbPit\nGuo1PdtE0luAnohYVBt/Cng5Im6oO24+8F1gUURsG+VxfLZJS+Wk8eupzzYZVJ2zTXIm+9xsp4O+\nq6CkDuAR4DzgSeAXwJKI2DzsmDcAPwEujYifN3gch3clObwHVSe8U5HG/GoU3k3bJhHRL2k5cBcw\nFVgVEZslXVnbvxK4BjgS+FrtAoWXIuLQbrBsZmYN+SKdOumsbnIm+6+mY61U23EV43jq3rVrF5df\nfjk//OEPmTVrFtdff/3QTarqVWflnTPZ52Y7HfTK26y8JvIHb3z/OSxbtozDDz+c3/3ud2zYsIEL\nLriABQsWMG/evAmszcwr7xHSWd2kYiJX3hMb3s3q3rt3L0cddRSbNm3i+OOPB+DDH/4ws2fP5vrr\nrx/5iJVZeaci7ZW3b0xldpAeffRROjo6hoIbYMGCBWzatKnAqqwqHN7JyosuoPL27NnDjBkzDtjW\n6PMrqyUvuoBKcHibHaTp06eze/fuA7Y9++yzHHHEEQVVZFXi8E5WVnQBlXfiiSfS39/Ptm37r0l7\n8MEHhz7gobqyoguoBL9hWcdvCrXa5H3DEmDJkiVI4pvf/CYPPPAA7373u1m/fj0nn1x/402/YVk+\nfsPSCpEXXUAJaAL/jM9Xv/pVnn/+eY4++mguvfRSvv71r48a3NWSF11AJfg8b0tSWVZMRx55JN/7\n3veKLsMqyG2TOv7VtNV8b5NBbpuUTRrzy20TM7NJxOGdrLzoAswayIsuoBIc3mZmCXLPu477iq3m\nnvcg97zLJo355Z63mdkk4vBOVl50AWYN5EUXUAkObzOzBLnnXcd9xVZzz3uQe95lk8b8cs/bJhVJ\nE/6nmRUrVnD66adz+OGHc9lll7XhWZvt58vjk5VT+bu39RT72HPmzOFzn/scd911F88///wEFpOa\nnMrPzTZweJsdpPe85z0A9PX1sWPHjoKrsapx2yRZWdEFWE0KfdP2yoouoBIc3maHaDz9cbNWc3gn\nKy+6AKvxyrteXnQBleDwNjtEXnlbERzeycqKLqDy9u3bxwsvvEB/fz/79u3jxRdfZN++fUWXVQJZ\n0QVUgi/SqeMLIVptIj/DcmI1q7unp4cvfOELI7Zdc801ox7vi3TKJu2LdBzeddL5AclJY4XjKywH\nVSe8cyb73GwnX2FpZjaJeOVdJ53VTSq88h5UnZV3KtKYX155m5lNIg7vZOVFF2DWQF50AZXg8DYz\nS5B73nXcV2w197wHueddNmnMr0Y9b99V0ErNVy+aja5p20TSIklbJG2VdHWDY75S2/+gpFNbX6aN\nlBddwISLiEn3pxryoguohDHDW9JUYAWwCJgHLJF0ct0x5wPHR8QJwBXA1yaoVjvAL4suwKwBz812\naLbyXghsi4jHI+IlYA1wcd0xFwHfAoiI+4CZkl7X8kqtzjNFF2DWgOdmOzQL7znA9mHjHbVtzY45\n9tBLMzOzRpqF93ibdPXvKlWluVegx4suwKyBx4suoBKanW3yBDB32HguAyvrsY45trZthHTOHEil\nzm8VXcC4pPO6pyCVf0vPzYnWLLz7gBMkdQJPAt3Akrpj1gHLgTWS3gI8ExG/rX+g0c5TNDOzgzNm\neEdEv6TlwF3AVGBVRGyWdGVt/8qIuEPS+ZK2AXuByya8ajOzimvbFZZmZtY6vsIyAbVz6y9m/5k+\nO4B1EbG5uKrMrEi+MVXJ1a5qXV0b3lf7MwVYLelThRVmNgZJbp9OMLdNSk7SVmBe7SKp4dtfATwc\nEccXU5lZY5K2R8Tc5kfawXLbpPz2MdAuebxu++zaPrNCSHpojN1Ht62QinJ4l98/AD+qnc0zeCXr\nXOAEBk7RNCvK0Qzc9+jpUfbd2+ZaKsfhXXIRcaekkxi4z8wcBq5efQLoi4j+QouzqvsvYHpEbKjf\nIenuAuqpFPe8zcwS5LNNzMwS5PA2M0uQw9vMLEEObzOzBDm8LWmSPiPpV7XPT90gaWELHvMWSVfU\nbftrSXeM8Xd6Jb33UL+32Xg5vC1Zks4ELgBOjYgFwHkc+KlOB+vbwPvrtr2/tr2RwB9CYm3k8LaU\nvR74w+CtAyJiV0Q8Jek0SbmkPkl3Snq9pFdL2iLpRABJqyVd3uBxfwK8UdLra8e+ioH/GP5T0jWS\nfiHpIUkr6/6e71lvbePwtpT9NzBX0iOSbpJ0lqRpwI3AeyPidOAW4LqIeJaBK1J7Jb0feHVErBrt\nQSNiH3A7sLi26ULgpxGxB7gxIhZGxJuBP5P07ol9imajc3hbsiJiL3AacAXwe+C22tdvYuCWAhuA\nz1C7lW5E/Aj4FbAC+PsmD7+a/a2T97P/zo7nSvq5pI3AucC8lj0hsz+BL4+3pEXEy8DdwN21GyUt\nAzZFxF/VHytpCnAyA5/4dBQDH+3XyHrgGEkLgDOBxZIOB24CTouIJyRdCxze0idkNk5eeVuyJJ0o\n6YRhm04FNgOzap+niqRpkgZXx/8IbAI+ANwiqeHiJQbuG3EbA5+ke0dE/B/7g/qPkqYDl7T0CZn9\nCbzytpRNB26UNBPoB7Yy0Da5GfiKpFczMMf/XVI/cDlwRkTslXQP8FmgZ4zHXw38E/BJgIh4RtI3\nGGi97GTggzGG89km1ja+MZWZWYLcNjEzS5DbJlZpkn4OHFa3+dKI2FREPWbj5baJmVmC3DYxM0uQ\nw9vMLEEObzOzBDm8zcwS5PA2M0vQ/wNGao8k392SNgAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], @@ -1077,6 +1077,556 @@ } ], "prompt_number": 18 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature: Embarked" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Embarked column might be an important feature but is missing a couple data points:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df[df['Embarked'].isnull()]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedSex_Val
61 62 1 1 Icard, Miss. Amelie female 38 0 0 113572 80 B28 NaN 0
829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62 0 0 113572 80 B28 NaN 0
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 19, + "text": [ + " PassengerId Survived Pclass Name \\\n", + "61 62 1 1 Icard, Miss. Amelie \n", + "829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked Sex_Val \n", + "61 female 38 0 0 113572 80 B28 NaN 0 \n", + "829 female 62 0 0 113572 80 B28 NaN 0 " + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Determine the unique values of Embarked:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "embarked_locations = sort(df['Embarked'].unique())\n", + "embarked_locations" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 20, + "text": [ + "array([nan, 'C', 'Q', 'S'], dtype=object)" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Prepare to map Embarked from a string to a number representation:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "embarked_locations_mapping = dict(zip(embarked_locations, \n", + " range(0, len(embarked_locations) + 1)))\n", + "embarked_locations_mapping" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 21, + "text": [ + "{nan: 0, 'C': 1, 'Q': 2, 'S': 3}" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Transform Embarked from a string to a number representation to prepare it for machine learning algorithms:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df['Embarked_Val'] = df['Embarked'].map(embarked_locations_mapping).astype(int)\n", + "df.head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedSex_ValEmbarked_Val
0 1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.2500 NaN S 1 3
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 0 PC 17599 71.2833 C85 C 0 1
2 3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.9250 NaN S 0 3
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1000 C123 S 0 3
4 5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.0500 NaN S 1 3
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 22, + "text": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 \n", + "2 Heikkinen, Miss. Laina female 26 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 \n", + "4 Allen, Mr. William Henry male 35 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked Sex_Val Embarked_Val \n", + "0 0 A/5 21171 7.2500 NaN S 1 3 \n", + "1 0 PC 17599 71.2833 C85 C 0 1 \n", + "2 0 STON/O2. 3101282 7.9250 NaN S 0 3 \n", + "3 0 113803 53.1000 C123 S 0 3 \n", + "4 0 373450 8.0500 NaN S 1 3 " + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count the number of passengers by Embarked:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "for embarked in range(0, len(embarked_locations)):\n", + " print embarked, len(df[df['Embarked_Val'] == embarked])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0 2\n", + "1 168\n", + "2 77\n", + "3 644\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the histogram for Embarked_Val:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df['Embarked_Val'].hist(bins=len(embarked_locations))\n", + "plt.show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFiRJREFUeJzt3W+MHHd9x/H3J3EsIFAuVqqL7aQ6V7IJllod0JiqgHqk\ntgWotfOgahwJ6kMtqhrxR6pa2aat/KiH5SdFVZ9ULWmuf+LKDchyKA62wYtALXYBH4RcXNsSJ8W0\nPohCIkL6wJG/fTDjenVZ3+3eze9m5refl7TKzOzs7ve7s/ne3Od214oIzMwsX7fVXYCZmaXlQW9m\nljkPejOzzHnQm5llzoPezCxzHvRmZplbctBLepuk812XlyV9UtI6SackXZR0UtJI120OSLok6YKk\nnWlbMDOzxWiQ99FLug34IbAN+ATwQkQclrQPuCsi9kvaCjwBPABsBE4DWyLieuXVm5nZkgaNbrYD\nlyPieWAXMF1unwYeKpd3A0ci4lpEzAGXKX4wmJlZDQYd9HuAI+XyaETMl8vzwGi5vAG40nWbKxRn\n9mZmVoO+B72ktcBvAf+68Loo8p/FMiB/z4KZWU3WDLDvB4FvR8SPy/V5SfdExFVJ64Efldt/CNzX\ndbt7y23/T5IHv5nZMkSEBr3NINHNI9yMbQCOA3vL5b3Asa7teyStlbQJ2Ayc61FstpeDBw/WXoP7\nc3/D1tsw9LdcfZ3RS7qT4g+xH+vafAg4Kun3gDngd8oBPivpKDALvAY8GiupsIXm5ubqLiEp99de\nOfcG+fe3XH0N+oj4GXD3gm0vUgz/XvtPAVMrrs7MzFbMn4xNYHJysu4SknJ/7ZVzb5B/f8s10Aem\nKntQadjSHDOzFZNEJP5jrPWp0+nUXUJS7q+9cu4N8u9vuTzozcwy5+jGzKwlHN2YmVlPHvQJ5J4T\nur/2yrk3yL+/5fKgNzPLnDN6M7OWcEZvZmY9edAnkHtO6P7aK+feIP/+lsuD3swsc87ozcxaYrkZ\n/SD/8IiZ2UCkgWeSJeDoJoHcc0L311719BareDmzyo+32pfl8aA3M8ucM3ozS6aIbvz/enX8Pnoz\nM+vBgz6BnDNecH9tlnNvhU7dBTSSB72ZWeac0ZtZMs7oq+aM3szMevCgTyD3HNT9tVfOvRU6dRfQ\nSH0Nekkjkp6U9JykWUnvlrRO0ilJFyWdlDTStf8BSZckXZC0M135Zma2lL4yeknTwNci4jFJa4A7\ngT8FXoiIw5L2AXdFxH5JW4EngAeAjcBpYEtEXO+6P2f0ZkPAGX3VEmX0kt4KvC8iHgOIiNci4mVg\nFzBd7jYNPFQu7waORMS1iJgDLgPbBi3MzMyq0U90swn4saS/l/QdSX8r6U5gNCLmy33mgdFyeQNw\npev2VyjO7IdG7jmo+2uvnHsrdOouoJH6+fbKNcA7gY9HxH9K+iywv3uHiAhJi/1+9rrrJicnGRsb\nA2BkZITx8XEmJiaAmy/Gtq7PzMw0qh735/7qXL85fL0++HoHeLxcH2O5lszoJd0D/EdEbCrX3wsc\nAH4ReH9EXJW0HjgTEfdL2g8QEYfK/Z8GDkbE2a77dEZvNgSc0VctUUYfEVeB5yVtKTdtB54FngL2\nltv2AsfK5ePAHklrJW0CNgPnBi3MzMyq0e/76D8B/LOk7wK/DPwFcAjYIeki8GC5TkTMAkeBWeAE\n8Oiwnb7nnoO6v/bKubdCp+4CGqmvf2EqIr5L8XbJhbbfYv8pYGoFdZmZWUX8XTdmlowz+qr5u27M\nzKwHD/oEcs9B3V975dxboVN3AY3kQW9mljln9GaWjDP6qjmjNzOzHjzoE8g9B3V/7ZVzb4VO3QU0\nkge9mVnmnNGbWTLO6KvmjN7MzHrwoE8g9xzU/bVXzr0VOnUX0Ege9GZmmXNGb2bJOKOvmjN6MzPr\nwYM+gdxzUPfXXjn3VujUXUAjedCbmWXOGb2ZJeOMvmrO6M3MrAcP+gRyz0HdX3vl3FuhU3cBjeRB\nb2aWOWf0ZpaMM/qqOaM3M7MePOgTyD0HdX/tlXNvhU7dBTRSX4Ne0pyk70k6L+lcuW2dpFOSLko6\nKWmka/8Dki5JuiBpZ6rizcxsaX1l9JJ+ALwrIl7s2nYYeCEiDkvaB9wVEfslbQWeAB4ANgKngS0R\ncb3rts7ozYaAM/qqpc/oF975LmC6XJ4GHiqXdwNHIuJaRMwBl4FtgxZmZmbV6HfQB3Ba0rckfazc\nNhoR8+XyPDBaLm8ArnTd9grFmf3QyD0HdX/tlXNvhU7dBTTSmj73e09E/I+knwdOSbrQfWVEhKTF\nfj973XWTk5OMjY0BMDIywvj4OBMTE8DNF2Nb12dmZhpVj/tzf3Wu3xy+Xh98vQM8Xq6PsVwDv49e\n0kHgFeBjwEREXJW0HjgTEfdL2g8QEYfK/Z8GDkbE2a77cEZvNgSc0VctUUYv6U2S3lIu3wnsBJ4B\njgN7y932AsfK5ePAHklrJW0CNgPnBi3MzMyq0U9GPwp8XdIMcBb4YkScBA4BOyRdBB4s14mIWeAo\nMAucAB4dttP33HNQ99deOfdW6NRdQCMtmdFHxA+A8R7bXwS23+I2U8DUiqszM7MV83fdmFkyzuir\n5u+6MTOzHjzoE8g9B3V/7ZVzb4VO3QU0kge9mVnmnNGbWTLO6KvmjN7MzHrwoE8g9xzU/bVXzr0V\nOnUX0Ege9GZmmXNGb2bJOKOvmjN6MzPrwYM+gdxzUPfXXjn3VujUXUAjedCbmWXOGb2ZJeOMvmrO\n6M3MrAcP+gRyz0HdX3vl3FuhU3cBjeRBb2aWOWf0ZpaMM/qqOaM3M7MePOgTyD0HdX/tlXNvhU7d\nBTSSB72ZWeac0ZtZMs7oq+aM3szMevCgTyD3HNT9tVfOvRU6dRfQSH0Nekm3Szov6alyfZ2kU5Iu\nSjopaaRr3wOSLkm6IGlnqsLNzKw/fWX0kv4IeBfwlojYJekw8EJEHJa0D7grIvZL2go8ATwAbARO\nA1si4vqC+3NGbzYEnNFXLVFGL+le4EPA3wE3HmAXMF0uTwMPlcu7gSMRcS0i5oDLwLZBizIzs+r0\nE938JfAnQPdZ+WhEzJfL88BoubwBuNK13xWKM/uhknsO6v7aK+feCp26C2ikNYtdKek3gR9FxHlJ\nE732iYiQtNjvZj2vm5ycZGxsDICRkRHGx8eZmCge4saLsa3rMzMzjarH/bm/OtdvDl+vD77eAR4v\n18dYrkUzeklTwEeA14A3AD8HfIEig5+IiKuS1gNnIuJ+SfsBIuJQefungYMRcXbB/TqjNxsCzuir\nliCjj4hPR8R9EbEJ2AN8NSI+AhwH9pa77QWOlcvHgT2S1kraBGwGzg1alJmZVWfQ99Hf+NF8CNgh\n6SLwYLlORMwCR4FZ4ATw6DCeuueeg7q/9sq5t0Kn7gIaadGMvltEfA34Wrn8IrD9FvtNAVOVVGdm\nZivm77oxs2Sc0VfN33VjZmY9eNAnkHsO6v7aK+feCp26C2gkD3ozs8w5ozezZJzRV80ZvZmZ9eBB\nn0DuOaj7a6+ceyt06i6gkTzozcwy54zezJJxRl81Z/RmZtaDB30Cueeg7q+9cu6t0Km7gEbyoDcz\ny5wzejNLxhl91ZzRm5lZDx70CeSeg7q/9sq5t0Kn7gIayYPezCxzzujNLBln9FVzRm9mZj140CeQ\new7q/tor594KnboLaCQPejOzzDmjN7NknNFXzRm9mZn14EGfQO45qPtrr5x7K3TqLqCRFh30kt4g\n6aykGUmzkj5Tbl8n6ZSki5JOShrpus0BSZckXZC0M3UDZma2uCUzeklviohXJa0BvgH8MbALeCEi\nDkvaB9wVEfslbQWeAB4ANgKngS0RcX3BfTqjNxsCzuirliijj4hXy8W1wO3ATygG/XS5fRp4qFze\nDRyJiGsRMQdcBrYNWpSZmVVnyUEv6TZJM8A8cCYingVGI2K+3GUeGC2XNwBXum5+heLMfqjknoO6\nv/bKubdCp+4CGmnNUjuUscu4pLcCX5b0/gXXh6TFfjfred3k5CRjY2MAjIyMMD4+zsTEBHDzxdjW\n9ZmZmUbV4/7cX53rN4ev1wdf7wCPl+tjLNdA76OX9OfA/wK/D0xExFVJ6ynO9O+XtB8gIg6V+z8N\nHIyIswvuxxm92RBwRl+1BBm9pLtvvKNG0huBHcB54Diwt9xtL3CsXD4O7JG0VtImYDNwbtCizMys\nOktl9OuBr5YZ/VngqYj4CnAI2CHpIvBguU5EzAJHgVngBPDoMJ66556Dur/2yrm3QqfuAhpp0Yw+\nIp4B3tlj+4vA9lvcZgqYqqQ6MzNbMX/XjZkl44y+av6uGzMz68GDPoHcc1D3114591bo1F1AI3nQ\nm5llzhm9mSXjjL5qzujNzKwHD/oEcs9B3V975dxboVN3AY3kQW9mljln9GaWjDP6qjmjNzOzHjzo\nE8g9B3V/7ZVzb4VO3QU0kge9mVnmnNGbWTLO6KvmjN7MzHrwoE8g9xzU/bVXzr0VOnUX0Ege9GZm\nmXNGb2bJOKOvmjN6MzPrwYM+gdxzUPfXXjn3VujUXUAjedCbmWXOGb2ZJeOMvmrO6M3MrAcP+gRy\nz0HdX3vl3FuhU3cBjbTkoJd0n6Qzkp6V9H1Jnyy3r5N0StJFSScljXTd5oCkS5IuSNqZsgEzM1vc\nkhm9pHuAeyJiRtKbgW8DDwEfBV6IiMOS9gF3RcR+SVuBJ4AHgI3AaWBLRFzvuk9n9GZDwBl91RJl\n9BFxNSJmyuVXgOcoBvguYLrcbZpi+APsBo5ExLWImAMuA9sGLczMzKoxUEYvaQx4B3AWGI2I+fKq\neWC0XN4AXOm62RWKHwxDI/cc1P21V869FTp1F9BIa/rdsYxtPg98KiJ+WvxKVoiIkLTY72evu25y\ncpKxsTEARkZGGB8fZ2JiArj5Ymzr+szMTKPqcX/ur871m8PX64Ovd4DHy/Uxlquv99FLugP4InAi\nIj5bbrsATETEVUnrgTMRcb+k/QARcajc72ngYESc7bo/Z/RmQ8AZfdUSZfQqjtTngNkbQ750HNhb\nLu8FjnVt3yNpraRNwGbg3KCFmZlZNfrJ6N8DfBh4v6Tz5eUDwCFgh6SLwIPlOhExCxwFZoETwKPD\ndvqeew7q/tor594KnboLaKQlM/qI+Aa3/oGw/Ra3mQKmVlCXmZlVxN91Y2bJOKOvmr/rxszMevCg\nTyD3HNT9tVfOvRU6dRfQSB70ZmaZc0ZvZsk4o6/a8jL6vj8Za83V/Sllq4ZPRCwnjm4SqCcHjVW8\nnFnlx1vtS76c0Q8nD3ozs8w5o8+Ac9CqydFNRfzarJrfR29mZj140CfgHNSayq/N4eRBb2aWOWf0\nGXAOWjVn9FXxa7NqzujNzKwHD/oEnINaU/m1OZw86M3MMueMPgPOQavmjL4qfm1WzRm9mZn14EGf\ngHNQayq/NoeTB72ZWeac0WfAOWjVnNFXxa/NqjmjNzOzHjzoE3AOak3l1+ZwWnLQS3pM0rykZ7q2\nrZN0StJFSScljXRdd0DSJUkXJO1MVbiZmfVnyYxe0vuAV4B/iIhfKrcdBl6IiMOS9gF3RcR+SVuB\nJ4AHgI3AaWBLRFxfcJ/O6CvkHLRqzuir4tdm1RJl9BHxdeAnCzbvAqbL5WngoXJ5N3AkIq5FxBxw\nGdg2aFFmZlad5Wb0oxExXy7PA6Pl8gbgStd+VyjO7IeKc1BrKr82h9Oald5BRISkxX4363nd5OQk\nY2NjAIyMjDA+Ps7ExARw88XY1vWZmZlVfbxCB5joWibh+kzi+697vXiOm/J6avt6/cezzesd4PFy\nfYzl6ut99JLGgKe6MvoLwEREXJW0HjgTEfdL2g8QEYfK/Z4GDkbE2QX354y+Qs5Bq+aMvip+bVZt\ndd9HfxzYWy7vBY51bd8jaa2kTcBm4NwyH8PMzCrQz9srjwD/DrxN0vOSPgocAnZIugg8WK4TEbPA\nUWAWOAE8Ooyn7s5Bran82hxOS2b0EfHILa7afov9p4CplRRlZmbV8XfdZMA5aNWc0VfFr82q+btu\nzMysBw/6BJyDtp8kXyq4rL5ODY/ZfCt+H71ZnnKNGzp0f14gvTqGvS3kjD4DzkGr5uezOn4uq+WM\n3szMevCgT8AZvTVXp+4CEuvUXUAjedCbmWXOGX0GnNFXzc9ndfxcVssZvZmZ9eBBn4AzemuuTt0F\nJNapu4BG8qA3M8ucM/oMOKOvmp/P6vi5rJYzejMz68GDPgFn9NZcnboLSKxTdwGN5EFvZpY5Z/QZ\ncEZfNT+f1fFzWS1n9GZm1oMHfQLO6K25OnUXkFin7gIayYPezCxzzugz4Iy+an4+q+PnslrO6M3M\nrIckg17SByRdkHRJ0r4Uj9FkzuituTp1F5BYp+4CGqnyQS/pduCvgQ8AW4FHJL296sdpspmZmbpL\nSCz3/nKW+7HLvb/lSXFGvw24HBFzEXEN+Bdgd4LHaayXXnqp7hISy72/nOV+7HLvb3nWJLjPjcDz\nXetXgHcv3Ono0aMJHroZnn322az7M7N2STHo+/oT+8MPP5zgoZvjySefrLuEhObqLsCWba7uAhKb\nq7uARkox6H8I3Ne1fh/FWb0lNfA7rlZoepUfb7Wt9vO5mlb72Pm1WbfK30cvaQ3wX8BvAP8NnAMe\niYjnKn0gMzPrS+Vn9BHxmqSPA18Gbgc+5yFvZlafWj4Za2ZmqyfpJ2P7+eCUpL8qr/+upHekrKdq\nS/UnaULSy5LOl5c/q6PO5ZD0mKR5Sc8ssk+bj92i/bX82N0n6YykZyV9X9Inb7FfK49fP/21/Pi9\nQdJZSTOSZiV95hb79X/8IiLJhSK2uQyMAXdQfJLh7Qv2+RDwpXL53cA3U9VTU38TwPG6a11mf+8D\n3gE8c4vrW3vs+uyvzcfuHmC8XH4zxd/Mcvp/r5/+Wnv8yvrfVP53DfBN4L0rOX4pz+j7+eDULso/\nkUfEWWBE0mjCmqrU7wfDWvn2jYj4OvCTRXZp87Hrpz9o77G7GhEz5fIrwHPAhgW7tfb49dkftPT4\nAUTEq+XiWoqTyhcX7DLQ8Us56Ht9cGpjH/vcm7CmKvXTXwC/Vv5q9SVJW1etuvTafOz6kcWxkzRG\n8ZvL2QVXZXH8Fumv1cdP0m2SZoB54ExEzC7YZaDjl+J99Df0+1fehT912/LX4X7q/A5wX0S8KumD\nwDFgS9qyVlVbj10/Wn/sJL0ZeBL4VHnm+7pdFqy36vgt0V+rj19EXAfGJb0V+LKkiYjoLNit7+OX\n8oy+nw9OLdzn3nJbGyzZX0T89MavYBFxArhD0rrVKzGpNh+7JbX92Em6A/g88E8RcazHLq0+fkv1\n1/bjd0NEvAz8G/ArC64a6PilHPTfAjZLGpO0FngYOL5gn+PA7wJI+lXgpYiYT1hTlZbsT9Koin8V\nBEnbKN7OujBra6s2H7sltfnYlXV/DpiNiM/eYrfWHr9++mv58btb0ki5/EZgB3B+wW4DHb9k0U3c\n4oNTkv6gvP5vIuJLkj4k6TLwM+CjqeqpWj/9Ab8N/KGk14BXgT21FTwgSUeAXwfulvQ8cJDi3UWt\nP3awdH+0+NgB7wE+DHxP0o0B8WngFyCL47dkf7T7+K0HpiXdRnEy/o8R8ZWVzE5/YMrMLHP+pwTN\nzDLnQW9mljkPejOzzHnQm5llzoPezCxzHvRmZpnzoDczy5wHvZlZ5v4PSMCcHzXjuTwAAAAASUVO\nRK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the vast majority of passengers embarked in 'S': 3, we assign the two missing values in Embarked to this: " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df[df['Embarked_Val'] == embarked_locations_mapping[nan]]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedSex_ValEmbarked_Val
61 62 1 1 Icard, Miss. Amelie female 38 0 0 113572 80 B28 NaN 0 0
829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) female 62 0 0 113572 80 B28 NaN 0 0
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 25, + "text": [ + " PassengerId Survived Pclass Name \\\n", + "61 62 1 1 Icard, Miss. Amelie \n", + "829 830 1 1 Stone, Mrs. George Nelson (Martha Evelyn) \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked Sex_Val \\\n", + "61 female 38 0 0 113572 80 B28 NaN 0 \n", + "829 female 62 0 0 113572 80 B28 NaN 0 \n", + "\n", + " Embarked_Val \n", + "61 0 \n", + "829 0 " + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df.replace({'Embarked_Val' : { embarked_locations_mapping[nan] : embarked_locations_mapping['S'] }}, inplace=True)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 26 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Verify we do not have any more NaNs for Embarked_Val:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "sort(df['Embarked_Val'].unique())" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 27, + "text": [ + "array([1, 2, 3])" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot a normalized cross tab for Embarked_Val and Survived:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "embarked_val_xt = pd.crosstab(df['Embarked_Val'], df['Survived'])\n", + "embarked_val_xt_pct = embarked_val_xt.div(embarked_val_xt.sum(1).astype(float), axis=0)\n", + "embarked_val_xt_pct.plot(kind='bar', stacked=True)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 28, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAELCAYAAAAWWQdYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGW1JREFUeJzt3X+UVPV5x/H3I0tVRIKJ0aOIXU/8UQnCEpVotDJqa9AU\nrVbd0qjBptEcQf0jPTG1Uddak3A8bTRBDaY2m+MPfhx/9IgaaRpza6xGAq6oERSstCCisagIInHx\n6R8zrOOwu7PMfGe+fO9+Xudwdu+du/f7zH04z373uT/G3B0REUnLLrEDEBGRHafiLSKSIBVvEZEE\nqXiLiCRIxVtEJEEq3iIiCapavM3sX83sdTN7rp9tfmBmK8xsqZlNCBuiiIhUGsjM+yfA5L5eNLPT\ngIPd/RDgIuDWQLGJiEgfqhZvd/8V8FY/m5wO/LS07VPASDPbN0x4IiLSmxA971HA6rLlNcABAfYr\nIiJ9CHXC0iqWdc+9iEgDtQTYx6vA6LLlA0rrPsbMVNBFRGrg7pUT5CDF+wFgBjDXzI4B3nb31/sI\nIMBwA2Nm0NG04eCXwIlNHK+jucezmZS7tCl/YZltV7eBARRvM5sDTAL2NrPVwDXAUAB3n+3uD5vZ\naWa2EtgEXBgs6pS8HTsAqZlyl7ZBmr+qxdvdpw5gmxlhwhERkYHQHZahtMUOQGqm3KVtkOZPxTuU\ng2IHIDVT7tI2SPMX4oSlALzCoP1PlDzlLk0d8Ybu6yRivXbkRKiKt4gkK09X7ezoLwS1TULRzC1d\nyp0kSMVbRCRBKt6hvBI7AKmZcicJUvEWkVy5/vrrGTt2LOPHj2fChAksWrSo7n0uWLCAmTNnBogO\nhg8fHmQ/OmEZivqm6VLucuPJJ5/koYceoquri6FDh7J+/Xq2bNkyoJ/t7u6mpaX3kjhlyhSmTJkS\nJMZQV6po5i0iubFu3Tr23ntvhg4dCsAnP/lJ9ttvP1pbW1m/fj0Aixcv5sQTiw9D6ejo4Pzzz+f4\n44/nggsu4Nhjj+WFF17o2V+hUGDJkiV0dnZy6aWXsmHDBlpbW3te37RpEwceeCBbt27l5Zdf5tRT\nT+Woo47ihBNO4MUXXwTglVde4dhjj2XcuHF8+9vfDvZeVbxDUd80XcpdbpxyyimsXr2aww47jOnT\np/PYY48B/c92ly9fzi9+8Qvuvvtu2tvbmT9/PgCvvfYa69at48gjj+zZdsSIEbS1tZFlGQAPPvgg\nkydPZsiQIVx00UX88Ic/ZPHixdxwww1ccsklAFx++eVMnz6dZ599lv333z/Ye1XxFpHc2GOPPViy\nZAm33XYbn/70p2lvb6ezs7PP7c2M008/nV133RWAc889l3vuuQeA+fPnc84552z3M+3t7cybNw+A\nuXPn0t7ezsaNG3niiSc455xzmDBhAl//+tdZt24dAE888QRTpxYfEXXeeecFe6/qeYeivmm6lLtc\n2WWXXZg0aRKTJk3iiCOOoLOzk5aWFj788EMA3n///Y9tP2zYsJ7v999/fz71qU/x3HPPMX/+fGbP\nng18fOY+ZcoUrrzySt566y2efvppTjrpJN5991322msvurq6mvAOizTzFpHceOmll1ixYkXPcldX\nF62trbS2trJ48WIA7r333p7Xe7tDs729nZkzZ7JhwwbGjh273XbDhw/n6KOP5rLLLmPKlCmYGSNG\njOCggw7qmbW7O88++ywAxx13HHPnzgXgrrvuCvZeVbxDUd80XcpdbmzcuJFp06bx2c9+lvHjx7N8\n+XKuvfZarrnmGi6//HKOPvpoWlpaembSZrZdP/zss89m3rx5nHvuuT3rKrdrb2/v6ZFvc9ddd3H7\n7bfT1tbG2LFjeeCBBwC46aabuPnmmxk3bhxr164NdrWJNevZAGbmuf4knWY/3KgjX891KKfcpa1p\n+evI13E0s17fT2n9dhVfM+9Q1DdNl3InCVLxFhFJkIp3KOqbpku5kwSpeIuIJEjFOxT1TdOl3EmC\nVLxFRBKk4h2K+qbpUu4kQSreIiIJUvEORX3TdCl3ubLtbshG/huo9evXc+aZZzJ8+HBaW1uZM2dO\nsPepB1OJSA418s7LgRfv6dOns9tuu/HGG2/Q1dXFl770JcaPH8+YMWPqjkIz71DUN02XcicNsGnT\nJu677z6uu+46hg0bxnHHHccZZ5zBHXfcEWT/Kt4iIg3w0ksv0dLSwsEHH9yzbvz48fz2t78Nsn8V\n71DUN02XcicNsHHjRkaMGPGxdXvuuSfvvvtukP2reIuINMDw4cPZsGHDx9a988477LnnnkH2r+Id\nivqm6VLupAEOPfRQuru7WblyZc+6pUuX9nzAQ71UvEVEGmCPPfbgrLPO4uqrr+a9997j8ccfZ8GC\nBZx//vlB9q/iHYr6pulS7qRBbrnlFjZv3sw+++zDeeedx49+9CMOP/zwIPvWdd4ikkNhPmqsXnvt\ntRf3339/Q/at4h1Ksz9KS8JR7nIlTx+N1h+1TUREElS1eJvZZDNbbmYrzOyKXl7f28weMbNnzOx5\nM5vWkEh3dpq5pUu5kwT1W7zNbAgwC5gMjAGmmlllt30G0OXubUAB+CczUztGRKSBqs28JwIr3X2V\nu38AzAXOqNjmNWDbbUQjgP9z9+6wYSZA1wqnS7mTBFWbIY8CVpctrwE+X7HNj4FHzWwtsCdwbrjw\nRESkN9Vm3gM5bXsl8Iy77w+0ATebWZj7P1Oivmm6lDtJULWZ96vA6LLl0RRn3+W+AFwP4O4vm9kr\nwGHA4sqdTZs2jdbWVgBGjhxJW1sbhUIBgCzLAIItAx+/BGzbn8Z5Wab4nht1/GIvRz++DV6OfXxz\nk78cyrKMzs5OgJ562Rvr75rI0onHF4GTgbXAImCquy8r2+afgXfc/Voz2xdYAoxz9/UV+/JmXn9p\nZtDRtOGaf61wR36vZ1Xu0ta0/HXk6ziaWa/vp7R+u7uO+m2blE48zgAWAi8A89x9mZldbGYXlzb7\nDnCUmS0F/gP4ZmXhFhFplp3lY9BmzZrFUUcdxW677caFF14Y/H1WvaTP3X8G/Kxi3eyy798EpgSP\nLDXqm6ZLucufjvj7HjVqFFdddRULFy5k8+bNwcPQ9dgiIg1w5plnArB48WLWrKk8VVg/3R4fSo5P\noOSecicN1Ki+vIq3iEgDDbRHvqNUvENR3zRdyp00kGbeIiIJ0sx7Z6e+abqUO2mArVu38v7779Pd\n3c3WrVvZsmULW7duDbZ/FW8RkQa47rrrGDZsGDNnzuTOO+9k99135/rrrw+2/37vsAwp93dYNltH\nvu4uK6fcpS32HZaNalOUa0T+dvQOS13nLSK5kudfjOXUNglFfdN0KXeSIBVvEZEEqXiHomuF06Xc\nSYJUvEVEEqTiHYr6pulS7iRBKt4iIgnSpYKhqG+aLuUuWc24pntnpeItImnqiDfuznAtudomoahv\nmi7lLm2DNH8q3iIiCVLxDkV903Qpd2kbpPlT8RYRSZCKdyiDtO+WC8pd2gZp/lS8RUQSpOIdyiDt\nu+WCcpe2QZo/FW8RkQSpeIcySPtuuaDcpW2Q5k/FW0QkQbo9PpRB2nfLBeUuvI7YAeSfireINED8\nZ380zs7xMCy1TUIZpH23XFDuEpfFDiAKFW8RkQSpeIeivmm6lLvEFWIHEIWKt4hIglS8Q1HfNF3K\nXeKy2AFEoeItIpKgqsXbzCab2XIzW2FmV/SxTcHMuszseTPLgkeZAvVN06XcJa4QO4Ao+r3O28yG\nALOAPwFeBX5jZg+4+7KybUYCNwNfdPc1ZrZ3IwMWEZHqM++JwEp3X+XuHwBzgTMqtvkr4F53XwPg\n7m+GDzMB6pumS7lLXBY7gCiq3WE5ClhdtrwG+HzFNocAQ83sl8CewE3ufke4EGVQ6ogdgMjOrVrx\nHsg9rkOBzwEnA8OAJ83s1+6+ot7gkqK+aWC6vVoGqhA7gCiqFe9XgdFly6Mpzr7LrQbedPfNwGYz\newwYD2xXvKdNm0ZraysAI0eOpK2tjUKhAECWZQDBloHin8MHlX1PjpYpvudGHb/Yyx/9KZzP5djH\nV/mrb7mRxy/LMjo7OwF66mVvzL3vGY6ZtQAvUpxVrwUWAVMrTlj+EcWTml8EdgWeAtrd/YWKfXl/\nY4VmZs3907v8F0UzdEAzj2czmRnNnXlnNHf2ZrnNHSh/wUczw923+3Ot35m3u3eb2QxgITAEuN3d\nl5nZxaXXZ7v7cjN7BHgW+BD4cWXhFhGRsPqdeQcdKO8z72br0Mw7XZp5p23nmHnrDksRkQSpeIei\na4UTlsUOQOqSxQ4gChVvEZEEqXiHouu8E1aIHYDUpRA7gChUvEVEEqTiHYp63gnLYgcgdcliBxCF\nireISIJUvENRzzthhdgBSF0KsQOIQsVbRCRBKt6hqOedsCx2AFKXLHYAUah4i4gkSMU7FPW8E1aI\nHYDUpRA7gChUvEVEEqTiHYp63gnLYgcgdcliBxCFireISIJUvENRzzthhdgBSF0KsQOIQsVbRCRB\nKt6hqOedsCx2AFKXLHYAUah4i4gkSMU7FPW8E1aIHYDUpRA7gChUvEVEEqTiHYp63gnLYgcgdcli\nBxCFireISIJUvENRzzthhdgBSF0KsQOIQsVbRCRBKt6hqOedsCx2AFKXLHYAUah4i4gkSMU7FPW8\nE1aIHYDUpRA7gChUvEVEEqTiHYp63gnLYgcgdcliBxBFS+wAGqojdgAiIo1h7t6cgcy8WWOVxgOa\nN17zGc08ns2k3KVN+Qs8mhnubpXr1TYREUmQincwWewApGZZ7ACkLlnsAKJQ8RYRSZB63snKb99U\nuUub8hd4tFp73mY22cyWm9kKM7uin+2ONrNuMzur3mBFRKR//RZvMxsCzAImA2OAqWZ2eB/bzQQe\nAbb7DTE4ZLEDkJplsQOQumSxA4ii2sx7IrDS3Ve5+wfAXOCMXra7FLgH+F3g+EREpBfVivcoYHXZ\n8prSuh5mNopiQb+1tCrPza5+FGIHIDUrxA5A6lKIHUAU1Yr3QArxjcC3SmcjjUHbNhERaZ5qt8e/\nCowuWx5NcfZd7khgbvEMM3sDp5rZB+7+QOXOpk2bRmtrKwAjR46kra2NQqEAQJZlAMGWizI++q2c\nlb42avlGoK2J4xXfc6OOX+zlxh+/8uVt3zdrvPjHV/mrb7mRxy/LMjo7OwF66mVv+r1U0MxagBeB\nk4G1wCJgqrsv62P7nwAL3P2+Xl7L+aWCGc398y2/l5spd2lT/gKP1selgv3OvN2928xmAAuBIcDt\n7r7MzC4uvT67IdEmqRA7AKlZIXYAUpdC7ACi0E06ycrv7E25S5vyF3g0PZiq0bLYAUjNstgBSF2y\n2AFEoeItIpIgtU2Sld8/vZW7tCl/gUdT20REJD9UvIPJYgcgNctiByB1yWIHEIWKt4hIgtTzTlZ+\n+6bKXdqUv8CjqectIpIfKt7BZLEDkJplsQOQumSxA4hCxVtEJEHqeScrv31T5S5tyl/g0dTzFhHJ\nDxXvYLLYAUjNstgBSF2y2AFEoeItIpIg9byTld++qXKXNuUv8GjqeYuI5IeKdzBZ7ACkZlnsAKQu\nWewAolDxFhFJkHreycpv31S5S5vyF3g09bxFRPJDxTuYLHYAUrMsdgBSlyx2AFGoeIuIJEg972Tl\nt2+q3KVN+Qs8mnreIiL5oeIdTBY7AKlZFjsAqUsWO4AoVLxFRBKknney8ts3Ve7SpvwFHk09bxGR\n/FDxDiaLHYDULIsdgNQlix1AFCreIiIJUs87Wfntmyp3aVP+Ao+mnreISH6oeAeTxQ5AapbFDkDq\nksUOIAoVbxGRBKnnnaz89k2Vu7Qpf4FHU89bRCQ/BlS8zWyymS03sxVmdkUvr3/ZzJaa2bNm9l9m\nNi58qDu7LHYAUrMsdgBSlyx2AFFULd5mNgSYBUwGxgBTzezwis3+GzjB3ccB1wG3hQ5UREQ+UrXn\nbWbHAte4++TS8rcA3P17fWy/F/Ccux9QsV4976Dy2zdV7tKm/AUerY6e9yhgddnymtK6vnwVeHjH\nwhMRkR3RMoBtBvwrxsxOBP4aOK6316dNm0ZraysAI0eOpK2tjUKhAECWZQDBlosyoFD2PQ1cvhFo\na+J4xffcqOMXe7nxx698edv3zRov/vFV/upbbuTxy7KMzs5OgJ562ZuBtE2OATrK2iZ/B3zo7jMr\nthsH3AdMdveVvewn522TjPLC2nj5/dNbuUub8hd4tD7aJgMp3i3Ai8DJwFpgETDV3ZeVbXMg8Chw\nnrv/uo/95Lx4N1t+C4BylzblL/BofRTvqm0Td+82sxnAQmAIcLu7LzOzi0uvzwauBvYCbi0mjg/c\nfWLINyAiIh/RHZbBZOT5T7dmUu7SpvwFHk13WIqI5Idm3snK7+xNuUub8hd4NM28RUTyQ8U7mCx2\nAFKzLHYAUpcsdgBRqHiLiCRIPe9k5bdvqtylTfkLPJp63iIi+aHiHUwWOwCpWRY7AKlLFjuAKFS8\nRUQSpJ53svLbN1Xu0qb8BR5NPW8RkfxQ8Q4mix2A1CyLHYDUJYsdQBQq3iIiCVLPO1n57Zsqd2lT\n/gKPpp63iEh+qHgHk8UOQGqWxQ5A6pLFDiAKFW8RkQSp552s/PZNlbu0KX+BR1PPW0QkP1S8g8li\nByA1y2IHIHXJYgcQhYq3iEiC1PNOVn77pspd2pS/wKOp5y0ikh8q3sFksQOQmmWxA5C6ZLEDiELF\nW0QkQep5Jyu/fVPlLm3KX+DR1PMWEckPFe9gstgBSM2y2AFIXbLYAUSh4i0ikiD1vJOV376pcpc2\n5S/waOp5i4jkh4p3MFnsAKRmWewApC5Z7ACiUPEWEUmQet7Jym/fVLlLm/IXeDT1vEVE8qNq8Taz\nyWa23MxWmNkVfWzzg9LrS81sQvgwU5DFDkBqlsUOQOqSxQ4gin6Lt5kNAWYBk4ExwFQzO7xim9OA\ng939EOAi4NYGxbqTeyZ2AFIz5S5tgzN/1WbeE4GV7r7K3T8A5gJnVGxzOvBTAHd/ChhpZvsGj3Sn\n93bsAKRmyl3aBmf+qhXvUcDqsuU1pXXVtjmg/tBERKQv1Yr3QE+pVp4JzfOp5j6sih2A1GxV7ACk\nLqtiBxBFS5XXXwVGly2Ppjiz7m+bA0rrtlO8hKiZmj3eT5s6WvOPZzMpd2lT/hqtWvFeDBxiZq3A\nWqAdmFqxzQPADGCumR0DvO3ur1fuqLfrFEVEpDb9Fm937zazGcBCYAhwu7svM7OLS6/PdveHzew0\nM1sJbAIubHjUIiKDXNPusBQRkXB0h6UMKmZ2uJmdbGbDK9ZPjhWTDJyZHW9mY0rfF8zsb83s5Nhx\nxaCZd0BmdqG7/yR2HNI7M7sMmA4sAyYAl7v7v5Ve63L3QXp3cBrM7LvAiRRbuL8ETgAeAv4UWODu\nN0QMr+lUvAMys9XuPrr6lhKDmT0PHOPuG0sn4e8B7nT3G1W8d35m9gIwDvgD4HXgAHd/x8x2B55y\n93FRA2yyalebSAUze66fl/dpWiBSC3P3jQDuvsrMCsC9ZvaHNP/aNtlxv3f3bqDbzF5293cA3H2z\nmX0YObamU/HecftQfNbLW7289kSTY5Ed84aZtbn7MwClGfifAbdTnNHJzm2LmQ1z9/eAz21baWYj\nARVvqeohYLi7d1W+YGb/GSEeGbgLgA/KV7j7B2b2FeC2OCHJDpjk7u8DuHt5sW4BvhInpHjU8xYR\nSZAuFRQRSZCKt4hIglS8RUQSpOItIpIgFW+Jxsy2mllX2b9v7sDPFsxsQZ3jZ2Z2ZI0/22lmf9HH\na9eY2Xcq1rWVbjLpa38dZvaNWmKRwUmXCkpM78W6q7H0+axO7R8c0t/P3g08AlxZtu4vS+v725/I\ngGnmLTsdM1tlZt8pzcYXm9nnzOzfzWzltscRl4wwswfNbLmZ3WqlJ+Sb2S1m9hsze97MOir2+z0z\nWwKcXbZ+l9JM+h9K399gZovMbKmZXVTaxsxsVmmsn1O8WavXuzLdfQXwlplNLFt9DjDHzL5W2vcz\nZnZP6dZukR2m4i0x7V7RNjmntN6B/ynNyh8DOoEzgWOAa8t+fiLFDwIZA3wGOKu0/u/d/WhgPDDJ\nzMaW7fdNdz/S3eeV1g0F7gJedPergb+h+IEiE0v7/1rpOShnAocCh1O82ecL9D9bnkNxtk3pQ0rW\nu/vLwL3uPtHd2yg+IOurAz5aImXUNpGYNvfTNnmg9PU5YA933wRsMrMtZjai9Noid18FYGZzgOOB\ne4F2M/saxf/f+1Es7s+XfmZb0YbizHk2MN/dv1tadwpwhJltm5mPAA4B/hi424t3tb1mZo9WeW/z\ngCdKfezylskRZvaPwCeA4RTbKyI7TDNv2VltKX39EPh92foP+WjSUT7zNcBLs+RvACe5+3iKjzPY\nrWy7TWXfO8Xn0ZxoZruWrZ/h7hNK/z7j7j8vG2NA3H0N8ApQoPgXwbZfGp3AJaUn4F0LqG0iNVHx\nlp1dfwVzopm1mtkuwLnAryjOlDcBG8xsX+DUKvv/F+BhYH7pJOZC4BIzawEws0PNbBjF9k17qSe+\nH8XnSlczB/g+8LK7ry2tGw6sM7OhwHl89AtITzWUHaK2icS0u5mVP+DrZ+5+ZcU2lVd1eNnX3wCz\ngIOBR939fih+sAKwHFgNPF4tCHf/vpl9ArgD+DLQCjxdOgH6BvDn7n6/mZ0EvAD8LwN7guQ9wA8o\n9uW3uQp4Cvhd6eu2T/Sp58oXGYT0YCoRkQSpbSIikiC1TUTqYGb3AQdVrP5m2UlOkYZQ20REJEFq\nm4iIJEjFW0QkQSreIiIJUvEWEUmQireISIL+H3YfpgioDm/JAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It appears those that embarked in location 'C': 1 had the highest rate of survival." + ] } ], "metadata": {}