Added IPython Notebook for data structures, starting with snippets for tuples.

This commit is contained in:
Donne Martin 2015-01-25 06:52:00 -05:00
parent 125f5c0c81
commit adc16ceddb

267
core/structs.ipynb Normal file
View File

@ -0,0 +1,267 @@
{
"metadata": {
"name": "",
"signature": "sha256:3a81774c42cd506eb4c0d4a364178d879dabd4791d93008c2f967309d872bd37"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Structures"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tuples"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# One dimensional, fixed-length, immutable sequence\n",
"tup = (1, 2, 3)\n",
"tup"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 46,
"text": [
"(1, 2, 3)"
]
}
],
"prompt_number": 46
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"list_x = [1, 2, 3]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 47
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Convert to a tuple\n",
"type(tuple(list_x))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 48,
"text": [
"tuple"
]
}
],
"prompt_number": 48
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Nested tuples\n",
"nested_tup = ([1, 2, 3], (4, 5))\n",
"nested_tup"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 56,
"text": [
"([1, 2, 3], (4, 5))"
]
}
],
"prompt_number": 56
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Access by index\n",
"nested_tup[0]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 57,
"text": [
"[1, 2, 3]"
]
}
],
"prompt_number": 57
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Although tuples are immutable, their contents can contain mutable objects\n",
"nested_tup[0].append(4)\n",
"nested_tup[0]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 58,
"text": [
"[1, 2, 3, 4]"
]
}
],
"prompt_number": 58
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Concatenate tuples with +\n",
"(1, 3, 2) + (4, 5, 6)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 59,
"text": [
"(1, 3, 2, 4, 5, 6)"
]
}
],
"prompt_number": 59
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Multiply copies references to objects (objects themselves are not copied)\n",
"('foo', 'bar') * 2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 60,
"text": [
"('foo', 'bar', 'foo', 'bar')"
]
}
],
"prompt_number": 60
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Unpack tuples\n",
"a, b = nested_tup\n",
"a, b"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 66,
"text": [
"([1, 2, 3, 4], (4, 5))"
]
}
],
"prompt_number": 66
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Unpack nested tuples\n",
"(a, b, c, d), (e, f) = nested_tup\n",
"a, b, c, d, e, f"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 68,
"text": [
"(1, 2, 3, 4, 4, 5)"
]
}
],
"prompt_number": 68
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# A common use of variable unpacking is when iterating over sequences\n",
"# of tuples or lists\n",
"seq = [( 1, 2, 3), (4, 5, 6), (7, 8, 9)] \n",
"for a, b, c in seq: \n",
" print(a, b, c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1, 2, 3)\n",
"(4, 5, 6)\n",
"(7, 8, 9)\n"
]
}
],
"prompt_number": 72
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}