Added Spark pair RDDs snippets.

This commit is contained in:
Donne Martin 2015-03-04 08:28:07 -05:00
parent e8b481f480
commit a5a3da5b28

View File

@ -1,7 +1,7 @@
{ {
"metadata": { "metadata": {
"name": "", "name": "",
"signature": "sha256:6de81fb20a6c3dee884019beb8604ace32cb3be3e7d63d3547dd433075d62e69" "signature": "sha256:ecb4af31fb2838a9be26c4692a4c2619957209df829895e8486de7eb84b59fa3"
}, },
"nbformat": 3, "nbformat": 3,
"nbformat_minor": 0, "nbformat_minor": 0,
@ -15,7 +15,8 @@
"# Spark\n", "# Spark\n",
"\n", "\n",
"* Python Shell\n", "* Python Shell\n",
"* RDDs" "* RDDs\n",
"* Pair RDDs"
] ]
}, },
{ {
@ -221,6 +222,135 @@
"language": "python", "language": "python",
"metadata": {}, "metadata": {},
"outputs": [] "outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pair RDDs\n",
"\n",
"Pair RDDs contain elements that are key-value pairs. Keys and values can be any type."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given a log file with the following space deilmited format: [date_time, user_id, ip_address, action], map each request to (user_id, 1):"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"DATE_TIME = 0\n",
"USER_ID = 1\n",
"IP_ADDRESS = 2\n",
"ACTION = 3\n",
"\n",
"log_data = sc.textFile(\"file:/path/*\")\n",
"\n",
"user_actions = log_data \\\n",
" .map(lambda line: line.split()) \\\n",
" .map(lambda words: (words[USER_ID], 1)) \\\n",
" .reduceByKey(lambda count1, count2: count1 + count2)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show the top 5 users by count, sorted in descending order:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"user_actions.map(lambda pair: (pair[0], pair[1])).sortyByKey(False).take(5)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Group IP addresses by user id:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"user_ips = log_data \\\n",
" .map(lambda line: line.split()) \\\n",
" .map(lambda words: (words[IP_ADDRESS],words[USER_ID])) \\\n",
" .groupByKey()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Given a user table with the following csv format: [user_id, user_info0, user_info1, ...], map each line to (user_id, [user_info...]):"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"user_data = sc.textFile(\"file:/path/*\")\n",
"\n",
"user_profile = user_data \\\n",
" .map(lambda line: line.split(',')) \\\n",
" .map(lambda words: (words[0], words[1:]))"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inner join the user_actions and user_profile RDDs:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"user_actions_with_profile = user_actions.join(user_profile)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show the joined table:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for (user_id, (user_info, count)) in user_actions_with_profiles.take(10):\n",
" print user_id, count, user_info"
],
"language": "python",
"metadata": {},
"outputs": []
} }
], ],
"metadata": {} "metadata": {}