Added images for each section. Removed outdated References section--will update in the future.

This commit is contained in:
Donne Martin 2015-04-04 08:53:04 -04:00
parent bac10f9f61
commit 6e2c1fd5d2

View File

@ -1,8 +1,15 @@
![alt text](http://i2.wp.com/donnemartin.com/wp-content/uploads/2015/02/ipython_notebook_cover2-e1425213196820.png)
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/coversmall.png">
</p>
# ipython-data-notebooks
Continually updated IPython Data Science Notebooks geared towards processing big data (AWS, Spark, Hadoop MapReduce, HDFS, Linux command line, Python, NumPy, pandas, matplotlib, SciPy, scikit-learn, Kaggle).
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
</p>
## kaggle
IPython Notebooks used in [kaggle](https://www.kaggle.com/) competitions.
@ -11,6 +18,11 @@ IPython Notebooks used in [kaggle](https://www.kaggle.com/) competitions.
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png">
</p>
## spark
IPython Notebooks demonstrating spark and HDFS functionality.
@ -20,6 +32,11 @@ IPython Notebooks demonstrating spark and HDFS functionality.
| [spark](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/aws.png">
</p>
## aws
IPython Notebooks demonstrating Amazon Web Services functionality.
@ -34,6 +51,11 @@ IPython Notebooks demonstrating Amazon Web Services functionality.
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
| [lambda](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png">
</p>
## python-core
IPython Notebooks demonstrating core Python functionality geared towards data analysis.
@ -46,6 +68,11 @@ IPython Notebooks demonstrating core Python functionality geared towards data an
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/unit_tests.ipynb) | Nose unit tests. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png">
</p>
## pandas
IPython Notebooks demonstrating pandas functionality.
@ -56,6 +83,11 @@ IPython Notebooks demonstrating pandas functionality.
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png">
</p>
## commands
IPython Notebooks demonstrating various command lines for Linux, Git, etc.
@ -69,29 +101,42 @@ IPython Notebooks demonstrating various command lines for Linux, Git, etc.
| [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/matplotlib.png">
</p>
## matplotlib
[Coming Soon] IPython Notebooks demonstrating matplotlib functionality.
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png">
</p>
## scikit-learn
[Coming Soon] IPython Notebooks demonstrating scikit-learn functionality.
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scipy.png">
</p>
## scipy
[Coming Soon] IPython Notebooks demonstrating SciPy functionality.
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/numpy.png">
</p>
## numpy
[Coming Soon] IPython Notebooks demonstrating NumPy functionality.
## References
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793)
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406)
* [Think Bayes](http://www.amazon.com/Think-Bayes-Allen-B-Downey/dp/1449370780)
* [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116)
## License
Copyright 2014 Donne Martin