mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Add TensorFlow tutorials supporting material.
This commit is contained in:
parent
1e633218e0
commit
4a640dcc60
486
deep-learning/tensor-flow-examples/Setup_TensorFlow.md
Normal file
486
deep-learning/tensor-flow-examples/Setup_TensorFlow.md
Normal file
|
@ -0,0 +1,486 @@
|
||||||
|
_From TensorFlow Official docs_
|
||||||
|
|
||||||
|
# Download and Setup <a class="md-anchor" id="AUTOGENERATED-download-and-setup"></a>
|
||||||
|
|
||||||
|
You can install TensorFlow using our provided binary packages or from source.
|
||||||
|
|
||||||
|
## Binary Installation <a class="md-anchor" id="AUTOGENERATED-binary-installation"></a>
|
||||||
|
|
||||||
|
The TensorFlow Python API currently requires Python 2.7: we are
|
||||||
|
[working](https://github.com/tensorflow/tensorflow/issues/1) on adding support
|
||||||
|
for Python 3.
|
||||||
|
|
||||||
|
The simplest way to install TensorFlow is using
|
||||||
|
[pip](https://pypi.python.org/pypi/pip) for both Linux and Mac.
|
||||||
|
|
||||||
|
If you encounter installation errors, see
|
||||||
|
[common problems](#common_install_problems) for some solutions. To simplify
|
||||||
|
installation, please consider using our virtualenv-based instructions
|
||||||
|
[here](#virtualenv_install).
|
||||||
|
|
||||||
|
### Ubuntu/Linux 64-bit <a class="md-anchor" id="AUTOGENERATED-ubuntu-linux-64-bit"></a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# For CPU-only version
|
||||||
|
$ pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||||
|
|
||||||
|
# For GPU-enabled version (only install this version if you have the CUDA sdk installed)
|
||||||
|
$ pip install https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||||
|
```
|
||||||
|
|
||||||
|
### Mac OS X <a class="md-anchor" id="AUTOGENERATED-mac-os-x"></a>
|
||||||
|
|
||||||
|
On OS X, we recommend installing [homebrew](http://brew.sh) and `brew install
|
||||||
|
python` before proceeding, or installing TensorFlow within [virtualenv](#virtualenv_install).
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Only CPU-version is available at the moment.
|
||||||
|
$ pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
|
||||||
|
```
|
||||||
|
|
||||||
|
## Docker-based installation <a class="md-anchor" id="AUTOGENERATED-docker-based-installation"></a>
|
||||||
|
|
||||||
|
We also support running TensorFlow via [Docker](http://docker.com/), which lets
|
||||||
|
you avoid worrying about setting up dependencies.
|
||||||
|
|
||||||
|
First, [install Docker](http://docs.docker.com/engine/installation/). Once
|
||||||
|
Docker is up and running, you can start a container with one command:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ docker run -it b.gcr.io/tensorflow/tensorflow
|
||||||
|
```
|
||||||
|
|
||||||
|
This will start a container with TensorFlow and all its dependencies already
|
||||||
|
installed.
|
||||||
|
|
||||||
|
### Additional images <a class="md-anchor" id="AUTOGENERATED-additional-images"></a>
|
||||||
|
|
||||||
|
The default Docker image above contains just a minimal set of libraries for
|
||||||
|
getting up and running with TensorFlow. We also have the following container,
|
||||||
|
which you can use in the `docker run` command above:
|
||||||
|
|
||||||
|
* `b.gcr.io/tensorflow/tensorflow-full`: Contains a complete TensorFlow source
|
||||||
|
installation, including all utilities needed to build and run TensorFlow. This
|
||||||
|
makes it easy to experiment directly with the source, without needing to
|
||||||
|
install any of the dependencies described above.
|
||||||
|
|
||||||
|
## VirtualEnv-based installation <a class="md-anchor" id="virtualenv_install"></a>
|
||||||
|
|
||||||
|
We recommend using [virtualenv](https://pypi.python.org/pypi/virtualenv) to
|
||||||
|
create an isolated container and install TensorFlow in that container -- it is
|
||||||
|
optional but makes verifying installation issues easier.
|
||||||
|
|
||||||
|
First, install all required tools:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# On Linux:
|
||||||
|
$ sudo apt-get install python-pip python-dev python-virtualenv
|
||||||
|
|
||||||
|
# On Mac:
|
||||||
|
$ sudo easy_install pip # If pip is not already installed
|
||||||
|
$ sudo pip install --upgrade virtualenv
|
||||||
|
```
|
||||||
|
|
||||||
|
Next, set up a new virtualenv environment. To set it up in the
|
||||||
|
directory `~/tensorflow`, run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ virtualenv --system-site-packages ~/tensorflow
|
||||||
|
$ cd ~/tensorflow
|
||||||
|
```
|
||||||
|
|
||||||
|
Then activate the virtualenv:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ source bin/activate # If using bash
|
||||||
|
$ source bin/activate.csh # If using csh
|
||||||
|
(tensorflow)$ # Your prompt should change
|
||||||
|
```
|
||||||
|
|
||||||
|
Inside the virtualenv, install TensorFlow:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# For CPU-only linux x86_64 version
|
||||||
|
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||||
|
|
||||||
|
# For GPU-enabled linux x86_64 version
|
||||||
|
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||||
|
|
||||||
|
# For Mac CPU-only version
|
||||||
|
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
|
||||||
|
```
|
||||||
|
|
||||||
|
Make sure you have downloaded the source code for TensorFlow, and then you can
|
||||||
|
then run an example TensorFlow program like:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
(tensorflow)$ cd tensorflow/models/image/mnist
|
||||||
|
(tensorflow)$ python convolutional.py
|
||||||
|
|
||||||
|
# When you are done using TensorFlow:
|
||||||
|
(tensorflow)$ deactivate # Deactivate the virtualenv
|
||||||
|
|
||||||
|
$ # Your prompt should change back
|
||||||
|
```
|
||||||
|
|
||||||
|
## Try your first TensorFlow program <a class="md-anchor" id="AUTOGENERATED-try-your-first-tensorflow-program"></a>
|
||||||
|
|
||||||
|
### (Optional) Enable GPU Support <a class="md-anchor" id="AUTOGENERATED--optional--enable-gpu-support"></a>
|
||||||
|
|
||||||
|
If you installed the GPU-enabled TensorFlow pip binary, you must have the
|
||||||
|
correct versions of the CUDA SDK and CUDNN installed on your
|
||||||
|
system. Please see [the CUDA installation instructions](#install_cuda).
|
||||||
|
|
||||||
|
You also need to set the `LD_LIBRARY_PATH` and `CUDA_HOME` environment
|
||||||
|
variables. Consider adding the commands below to your `~/.bash_profile`. These
|
||||||
|
assume your CUDA installation is in `/usr/local/cuda`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
|
||||||
|
export CUDA_HOME=/usr/local/cuda
|
||||||
|
```
|
||||||
|
|
||||||
|
### Run TensorFlow <a class="md-anchor" id="AUTOGENERATED-run-tensorflow"></a>
|
||||||
|
|
||||||
|
Open a python terminal:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ python
|
||||||
|
|
||||||
|
>>> import tensorflow as tf
|
||||||
|
>>> hello = tf.constant('Hello, TensorFlow!')
|
||||||
|
>>> sess = tf.Session()
|
||||||
|
>>> print sess.run(hello)
|
||||||
|
Hello, TensorFlow!
|
||||||
|
>>> a = tf.constant(10)
|
||||||
|
>>> b = tf.constant(32)
|
||||||
|
>>> print sess.run(a+b)
|
||||||
|
42
|
||||||
|
>>>
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
## Installing from sources <a class="md-anchor" id="source"></a>
|
||||||
|
|
||||||
|
### Clone the TensorFlow repository <a class="md-anchor" id="AUTOGENERATED-clone-the-tensorflow-repository"></a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ git clone --recurse-submodules https://github.com/tensorflow/tensorflow
|
||||||
|
```
|
||||||
|
|
||||||
|
`--recurse-submodules` is required to fetch the protobuf library that TensorFlow
|
||||||
|
depends on.
|
||||||
|
|
||||||
|
### Installation for Linux <a class="md-anchor" id="AUTOGENERATED-installation-for-linux"></a>
|
||||||
|
|
||||||
|
#### Install Bazel <a class="md-anchor" id="AUTOGENERATED-install-bazel"></a>
|
||||||
|
|
||||||
|
|
||||||
|
Follow instructions [here](http://bazel.io/docs/install.html) to install the
|
||||||
|
dependencies for Bazel. Then download bazel version 0.1.1 using the
|
||||||
|
[installer for your system](https://github.com/bazelbuild/bazel/releases) and
|
||||||
|
run the installer as mentioned there:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ chmod +x PATH_TO_INSTALL.SH
|
||||||
|
$ ./PATH_TO_INSTALL.SH --user
|
||||||
|
```
|
||||||
|
|
||||||
|
Remember to replace `PATH_TO_INSTALL.SH` to point to the location where you
|
||||||
|
downloaded the installer.
|
||||||
|
|
||||||
|
Finally, follow the instructions in that script to place bazel into your binary
|
||||||
|
path.
|
||||||
|
|
||||||
|
#### Install other dependencies <a class="md-anchor" id="AUTOGENERATED-install-other-dependencies"></a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ sudo apt-get install python-numpy swig python-dev
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Optional: Install CUDA (GPUs on Linux) <a class="md-anchor" id="install_cuda"></a>
|
||||||
|
|
||||||
|
In order to build or run TensorFlow with GPU support, both Cuda Toolkit 7.0 and
|
||||||
|
CUDNN 6.5 V2 from NVIDIA need to be installed.
|
||||||
|
|
||||||
|
TensorFlow GPU support requires having a GPU card with NVidia Compute Capability >= 3.5. Supported cards include but are not limited to:
|
||||||
|
|
||||||
|
* NVidia Titan
|
||||||
|
* NVidia Titan X
|
||||||
|
* NVidia K20
|
||||||
|
* NVidia K40
|
||||||
|
|
||||||
|
##### Download and install Cuda Toolkit 7.0 <a class="md-anchor" id="AUTOGENERATED-download-and-install-cuda-toolkit-7.0"></a>
|
||||||
|
|
||||||
|
https://developer.nvidia.com/cuda-toolkit-70
|
||||||
|
|
||||||
|
Install the toolkit into e.g. `/usr/local/cuda`
|
||||||
|
|
||||||
|
##### Download and install CUDNN Toolkit 6.5 <a class="md-anchor" id="AUTOGENERATED-download-and-install-cudnn-toolkit-6.5"></a>
|
||||||
|
|
||||||
|
https://developer.nvidia.com/rdp/cudnn-archive
|
||||||
|
|
||||||
|
Uncompress and copy the cudnn files into the toolkit directory. Assuming the
|
||||||
|
toolkit is installed in `/usr/local/cuda`:
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
tar xvzf cudnn-6.5-linux-x64-v2.tgz
|
||||||
|
sudo cp cudnn-6.5-linux-x64-v2/cudnn.h /usr/local/cuda/include
|
||||||
|
sudo cp cudnn-6.5-linux-x64-v2/libcudnn* /usr/local/cuda/lib64
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Configure TensorFlow's canonical view of Cuda libraries <a class="md-anchor" id="AUTOGENERATED-configure-tensorflow-s-canonical-view-of-cuda-libraries"></a>
|
||||||
|
From the root of your source tree, run:
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
$ ./configure
|
||||||
|
Do you wish to build TensorFlow with GPU support? [y/n] y
|
||||||
|
GPU support will be enabled for TensorFlow
|
||||||
|
|
||||||
|
Please specify the location where CUDA 7.0 toolkit is installed. Refer to
|
||||||
|
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
|
||||||
|
|
||||||
|
Please specify the location where CUDNN 6.5 V2 library is installed. Refer to
|
||||||
|
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda
|
||||||
|
|
||||||
|
Setting up Cuda include
|
||||||
|
Setting up Cuda lib64
|
||||||
|
Setting up Cuda bin
|
||||||
|
Setting up Cuda nvvm
|
||||||
|
Configuration finished
|
||||||
|
```
|
||||||
|
|
||||||
|
This creates a canonical set of symbolic links to the Cuda libraries on your system.
|
||||||
|
Every time you change the Cuda library paths you need to run this step again before
|
||||||
|
you invoke the bazel build command.
|
||||||
|
|
||||||
|
##### Build your target with GPU support. <a class="md-anchor" id="AUTOGENERATED-build-your-target-with-gpu-support."></a>
|
||||||
|
From the root of your source tree, run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ bazel build -c opt --config=cuda //tensorflow/cc:tutorials_example_trainer
|
||||||
|
|
||||||
|
$ bazel-bin/tensorflow/cc/tutorials_example_trainer --use_gpu
|
||||||
|
# Lots of output. This tutorial iteratively calculates the major eigenvalue of
|
||||||
|
# a 2x2 matrix, on GPU. The last few lines look like this.
|
||||||
|
000009/000005 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
|
||||||
|
000006/000001 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
|
||||||
|
000009/000009 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that "--config=cuda" is needed to enable the GPU support.
|
||||||
|
|
||||||
|
##### Enabling Cuda 3.0. <a class="md-anchor" id="AUTOGENERATED-enabling-cuda-3.0."></a>
|
||||||
|
TensorFlow officially supports Cuda devices with 3.5 and 5.2 compute
|
||||||
|
capabilities. In order to enable earlier Cuda devices such as Grid K520, you
|
||||||
|
need to target Cuda 3.0. This can be done through TensorFlow unofficial
|
||||||
|
settings with "configure".
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ TF_UNOFFICIAL_SETTING=1 ./configure
|
||||||
|
|
||||||
|
# Same as the official settings above
|
||||||
|
|
||||||
|
WARNING: You are configuring unofficial settings in TensorFlow. Because some
|
||||||
|
external libraries are not backward compatible, these settings are largely
|
||||||
|
untested and unsupported.
|
||||||
|
|
||||||
|
Please specify a list of comma-separated Cuda compute capabilities you want to
|
||||||
|
build with. You can find the compute capability of your device at:
|
||||||
|
https://developer.nvidia.com/cuda-gpus.
|
||||||
|
Please note that each additional compute capability significantly increases
|
||||||
|
your build time and binary size. [Default is: "3.5,5.2"]: 3.0
|
||||||
|
|
||||||
|
Setting up Cuda include
|
||||||
|
Setting up Cuda lib64
|
||||||
|
Setting up Cuda bin
|
||||||
|
Setting up Cuda nvvm
|
||||||
|
Configuration finished
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Known issues <a class="md-anchor" id="AUTOGENERATED-known-issues"></a>
|
||||||
|
|
||||||
|
* Although it is possible to build both Cuda and non-Cuda configs under the same
|
||||||
|
source tree, we recommend to run "bazel clean" when switching between these two
|
||||||
|
configs in the same source tree.
|
||||||
|
|
||||||
|
* You have to run configure before running bazel build. Otherwise, the build
|
||||||
|
will fail with a clear error message. In the future, we might consider making
|
||||||
|
this more conveninent by including the configure step in our build process,
|
||||||
|
given necessary bazel new feature support.
|
||||||
|
|
||||||
|
### Installation for Mac OS X <a class="md-anchor" id="AUTOGENERATED-installation-for-mac-os-x"></a>
|
||||||
|
|
||||||
|
Mac needs the same set of dependencies as Linux, however their installing those
|
||||||
|
dependencies is different. Here is a set of useful links to help with installing
|
||||||
|
the dependencies on Mac OS X :
|
||||||
|
|
||||||
|
#### Bazel <a class="md-anchor" id="AUTOGENERATED-bazel"></a>
|
||||||
|
|
||||||
|
Look for installation instructions for Mac OS X on
|
||||||
|
[this](http://bazel.io/docs/install.html) page.
|
||||||
|
|
||||||
|
#### SWIG <a class="md-anchor" id="AUTOGENERATED-swig"></a>
|
||||||
|
|
||||||
|
[Mac OS X installation](http://www.swig.org/Doc3.0/Preface.html#Preface_osx_installation).
|
||||||
|
|
||||||
|
Notes : You need to install
|
||||||
|
[PCRE](ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/) and *NOT* PCRE2.
|
||||||
|
|
||||||
|
#### Numpy <a class="md-anchor" id="AUTOGENERATED-numpy"></a>
|
||||||
|
|
||||||
|
Follow installation instructions [here](http://docs.scipy.org/doc/numpy/user/install.html).
|
||||||
|
|
||||||
|
|
||||||
|
### Create the pip package and install <a class="md-anchor" id="create-pip"></a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
|
||||||
|
|
||||||
|
# To build with GPU support:
|
||||||
|
$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
|
||||||
|
|
||||||
|
$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
|
||||||
|
|
||||||
|
# The name of the .whl file will depend on your platform.
|
||||||
|
$ pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
|
||||||
|
```
|
||||||
|
|
||||||
|
## Train your first TensorFlow neural net model <a class="md-anchor" id="AUTOGENERATED-train-your-first-tensorflow-neural-net-model"></a>
|
||||||
|
|
||||||
|
Starting from the root of your source tree, run:
|
||||||
|
|
||||||
|
```python
|
||||||
|
$ cd tensorflow/models/image/mnist
|
||||||
|
$ python convolutional.py
|
||||||
|
Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
|
||||||
|
Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
|
||||||
|
Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
|
||||||
|
Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
|
||||||
|
Extracting data/train-images-idx3-ubyte.gz
|
||||||
|
Extracting data/train-labels-idx1-ubyte.gz
|
||||||
|
Extracting data/t10k-images-idx3-ubyte.gz
|
||||||
|
Extracting data/t10k-labels-idx1-ubyte.gz
|
||||||
|
Initialized!
|
||||||
|
Epoch 0.00
|
||||||
|
Minibatch loss: 12.054, learning rate: 0.010000
|
||||||
|
Minibatch error: 90.6%
|
||||||
|
Validation error: 84.6%
|
||||||
|
Epoch 0.12
|
||||||
|
Minibatch loss: 3.285, learning rate: 0.010000
|
||||||
|
Minibatch error: 6.2%
|
||||||
|
Validation error: 7.0%
|
||||||
|
...
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
## Common Problems <a class="md-anchor" id="common_install_problems"></a>
|
||||||
|
|
||||||
|
### GPU-related issues <a class="md-anchor" id="AUTOGENERATED-gpu-related-issues"></a>
|
||||||
|
|
||||||
|
If you encounter the following when trying to run a TensorFlow program:
|
||||||
|
|
||||||
|
```python
|
||||||
|
ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory
|
||||||
|
```
|
||||||
|
|
||||||
|
Make sure you followed the the GPU installation [instructions](#install_cuda).
|
||||||
|
|
||||||
|
### Pip installation issues <a class="md-anchor" id="AUTOGENERATED-pip-installation-issues"></a>
|
||||||
|
|
||||||
|
#### Can't find setup.py <a class="md-anchor" id="AUTOGENERATED-can-t-find-setup.py"></a>
|
||||||
|
|
||||||
|
If, during `pip install`, you encounter an error like:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
...
|
||||||
|
IOError: [Errno 2] No such file or directory: '/tmp/pip-o6Tpui-build/setup.py'
|
||||||
|
```
|
||||||
|
|
||||||
|
Solution: upgrade your version of `pip`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install --upgrade pip
|
||||||
|
```
|
||||||
|
|
||||||
|
This may require `sudo`, depending on how `pip` is installed.
|
||||||
|
|
||||||
|
#### SSLError: SSL_VERIFY_FAILED <a class="md-anchor" id="AUTOGENERATED-sslerror--ssl_verify_failed"></a>
|
||||||
|
|
||||||
|
If, during pip install from a URL, you encounter an error like:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
...
|
||||||
|
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
|
||||||
|
```
|
||||||
|
|
||||||
|
Solution: Download the wheel manually via curl or wget, and pip install locally.
|
||||||
|
|
||||||
|
### On Linux <a class="md-anchor" id="AUTOGENERATED-on-linux"></a>
|
||||||
|
|
||||||
|
If you encounter:
|
||||||
|
|
||||||
|
```python
|
||||||
|
...
|
||||||
|
"__add__", "__radd__",
|
||||||
|
^
|
||||||
|
SyntaxError: invalid syntax
|
||||||
|
```
|
||||||
|
|
||||||
|
Solution: make sure you are using Python 2.7.
|
||||||
|
|
||||||
|
### On MacOSX <a class="md-anchor" id="AUTOGENERATED-on-macosx"></a>
|
||||||
|
|
||||||
|
|
||||||
|
If you encounter:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import six.moves.copyreg as copyreg
|
||||||
|
|
||||||
|
ImportError: No module named copyreg
|
||||||
|
```
|
||||||
|
|
||||||
|
Solution: TensorFlow depends on protobuf, which requires `six-1.10.0`. Apple's
|
||||||
|
default python environment has `six-1.4.1` and may be difficult to upgrade.
|
||||||
|
There are several ways to fix this:
|
||||||
|
|
||||||
|
1. Upgrade the system-wide copy of `six`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo easy_install -U six
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Install a separate copy of python via homebrew:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
brew install python
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Build or use TensorFlow
|
||||||
|
[within `virtualenv`](#virtualenv_install).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
If you encounter:
|
||||||
|
|
||||||
|
```
|
||||||
|
>>> import tensorflow as tf
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "<stdin>", line 1, in <module>
|
||||||
|
File "/usr/local/lib/python2.7/site-packages/tensorflow/__init__.py", line 4, in <module>
|
||||||
|
from tensorflow.python import *
|
||||||
|
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 13, in <module>
|
||||||
|
from tensorflow.core.framework.graph_pb2 import *
|
||||||
|
...
|
||||||
|
File "/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensor_shape_pb2.py", line 22, in <module>
|
||||||
|
serialized_pb=_b('\n,tensorflow/core/framework/tensor_shape.proto\x12\ntensorflow\"d\n\x10TensorShapeProto\x12-\n\x03\x64im\x18\x02 \x03(\x0b\x32 .tensorflow.TensorShapeProto.Dim\x1a!\n\x03\x44im\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\tb\x06proto3')
|
||||||
|
TypeError: __init__() got an unexpected keyword argument 'syntax'
|
||||||
|
```
|
||||||
|
|
||||||
|
This is due to a conflict between protobuf versions (we require protobuf 3.0.0).
|
||||||
|
The best current solution is to make sure older versions of protobuf are not
|
||||||
|
installed, such as:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
brew reinstall --devel protobuf
|
||||||
|
```
|
144
deep-learning/tensor-flow-examples/input_data.py
Normal file
144
deep-learning/tensor-flow-examples/input_data.py
Normal file
|
@ -0,0 +1,144 @@
|
||||||
|
"""Functions for downloading and reading MNIST data."""
|
||||||
|
from __future__ import print_function
|
||||||
|
import gzip
|
||||||
|
import os
|
||||||
|
import urllib
|
||||||
|
import numpy
|
||||||
|
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
|
||||||
|
def maybe_download(filename, work_directory):
|
||||||
|
"""Download the data from Yann's website, unless it's already here."""
|
||||||
|
if not os.path.exists(work_directory):
|
||||||
|
os.mkdir(work_directory)
|
||||||
|
filepath = os.path.join(work_directory, filename)
|
||||||
|
if not os.path.exists(filepath):
|
||||||
|
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
|
||||||
|
statinfo = os.stat(filepath)
|
||||||
|
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
|
||||||
|
return filepath
|
||||||
|
def _read32(bytestream):
|
||||||
|
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
|
||||||
|
return numpy.frombuffer(bytestream.read(4), dtype=dt)
|
||||||
|
def extract_images(filename):
|
||||||
|
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
|
||||||
|
print('Extracting', filename)
|
||||||
|
with gzip.open(filename) as bytestream:
|
||||||
|
magic = _read32(bytestream)
|
||||||
|
if magic != 2051:
|
||||||
|
raise ValueError(
|
||||||
|
'Invalid magic number %d in MNIST image file: %s' %
|
||||||
|
(magic, filename))
|
||||||
|
num_images = _read32(bytestream)
|
||||||
|
rows = _read32(bytestream)
|
||||||
|
cols = _read32(bytestream)
|
||||||
|
buf = bytestream.read(rows * cols * num_images)
|
||||||
|
data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||||
|
data = data.reshape(num_images, rows, cols, 1)
|
||||||
|
return data
|
||||||
|
def dense_to_one_hot(labels_dense, num_classes=10):
|
||||||
|
"""Convert class labels from scalars to one-hot vectors."""
|
||||||
|
num_labels = labels_dense.shape[0]
|
||||||
|
index_offset = numpy.arange(num_labels) * num_classes
|
||||||
|
labels_one_hot = numpy.zeros((num_labels, num_classes))
|
||||||
|
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
||||||
|
return labels_one_hot
|
||||||
|
def extract_labels(filename, one_hot=False):
|
||||||
|
"""Extract the labels into a 1D uint8 numpy array [index]."""
|
||||||
|
print('Extracting', filename)
|
||||||
|
with gzip.open(filename) as bytestream:
|
||||||
|
magic = _read32(bytestream)
|
||||||
|
if magic != 2049:
|
||||||
|
raise ValueError(
|
||||||
|
'Invalid magic number %d in MNIST label file: %s' %
|
||||||
|
(magic, filename))
|
||||||
|
num_items = _read32(bytestream)
|
||||||
|
buf = bytestream.read(num_items)
|
||||||
|
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||||
|
if one_hot:
|
||||||
|
return dense_to_one_hot(labels)
|
||||||
|
return labels
|
||||||
|
class DataSet(object):
|
||||||
|
def __init__(self, images, labels, fake_data=False):
|
||||||
|
if fake_data:
|
||||||
|
self._num_examples = 10000
|
||||||
|
else:
|
||||||
|
assert images.shape[0] == labels.shape[0], (
|
||||||
|
"images.shape: %s labels.shape: %s" % (images.shape,
|
||||||
|
labels.shape))
|
||||||
|
self._num_examples = images.shape[0]
|
||||||
|
# Convert shape from [num examples, rows, columns, depth]
|
||||||
|
# to [num examples, rows*columns] (assuming depth == 1)
|
||||||
|
assert images.shape[3] == 1
|
||||||
|
images = images.reshape(images.shape[0],
|
||||||
|
images.shape[1] * images.shape[2])
|
||||||
|
# Convert from [0, 255] -> [0.0, 1.0].
|
||||||
|
images = images.astype(numpy.float32)
|
||||||
|
images = numpy.multiply(images, 1.0 / 255.0)
|
||||||
|
self._images = images
|
||||||
|
self._labels = labels
|
||||||
|
self._epochs_completed = 0
|
||||||
|
self._index_in_epoch = 0
|
||||||
|
@property
|
||||||
|
def images(self):
|
||||||
|
return self._images
|
||||||
|
@property
|
||||||
|
def labels(self):
|
||||||
|
return self._labels
|
||||||
|
@property
|
||||||
|
def num_examples(self):
|
||||||
|
return self._num_examples
|
||||||
|
@property
|
||||||
|
def epochs_completed(self):
|
||||||
|
return self._epochs_completed
|
||||||
|
def next_batch(self, batch_size, fake_data=False):
|
||||||
|
"""Return the next `batch_size` examples from this data set."""
|
||||||
|
if fake_data:
|
||||||
|
fake_image = [1.0 for _ in xrange(784)]
|
||||||
|
fake_label = 0
|
||||||
|
return [fake_image for _ in xrange(batch_size)], [
|
||||||
|
fake_label for _ in xrange(batch_size)]
|
||||||
|
start = self._index_in_epoch
|
||||||
|
self._index_in_epoch += batch_size
|
||||||
|
if self._index_in_epoch > self._num_examples:
|
||||||
|
# Finished epoch
|
||||||
|
self._epochs_completed += 1
|
||||||
|
# Shuffle the data
|
||||||
|
perm = numpy.arange(self._num_examples)
|
||||||
|
numpy.random.shuffle(perm)
|
||||||
|
self._images = self._images[perm]
|
||||||
|
self._labels = self._labels[perm]
|
||||||
|
# Start next epoch
|
||||||
|
start = 0
|
||||||
|
self._index_in_epoch = batch_size
|
||||||
|
assert batch_size <= self._num_examples
|
||||||
|
end = self._index_in_epoch
|
||||||
|
return self._images[start:end], self._labels[start:end]
|
||||||
|
def read_data_sets(train_dir, fake_data=False, one_hot=False):
|
||||||
|
class DataSets(object):
|
||||||
|
pass
|
||||||
|
data_sets = DataSets()
|
||||||
|
if fake_data:
|
||||||
|
data_sets.train = DataSet([], [], fake_data=True)
|
||||||
|
data_sets.validation = DataSet([], [], fake_data=True)
|
||||||
|
data_sets.test = DataSet([], [], fake_data=True)
|
||||||
|
return data_sets
|
||||||
|
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
|
||||||
|
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
|
||||||
|
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
|
||||||
|
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
|
||||||
|
VALIDATION_SIZE = 5000
|
||||||
|
local_file = maybe_download(TRAIN_IMAGES, train_dir)
|
||||||
|
train_images = extract_images(local_file)
|
||||||
|
local_file = maybe_download(TRAIN_LABELS, train_dir)
|
||||||
|
train_labels = extract_labels(local_file, one_hot=one_hot)
|
||||||
|
local_file = maybe_download(TEST_IMAGES, train_dir)
|
||||||
|
test_images = extract_images(local_file)
|
||||||
|
local_file = maybe_download(TEST_LABELS, train_dir)
|
||||||
|
test_labels = extract_labels(local_file, one_hot=one_hot)
|
||||||
|
validation_images = train_images[:VALIDATION_SIZE]
|
||||||
|
validation_labels = train_labels[:VALIDATION_SIZE]
|
||||||
|
train_images = train_images[VALIDATION_SIZE:]
|
||||||
|
train_labels = train_labels[VALIDATION_SIZE:]
|
||||||
|
data_sets.train = DataSet(train_images, train_labels)
|
||||||
|
data_sets.validation = DataSet(validation_images, validation_labels)
|
||||||
|
data_sets.test = DataSet(test_images, test_labels)
|
||||||
|
return data_sets
|
85
deep-learning/tensor-flow-examples/multigpu_basics.py
Normal file
85
deep-learning/tensor-flow-examples/multigpu_basics.py
Normal file
|
@ -0,0 +1,85 @@
|
||||||
|
#Multi GPU Basic example
|
||||||
|
'''
|
||||||
|
This tutorial requires your machine to have 2 GPUs
|
||||||
|
"/cpu:0": The CPU of your machine.
|
||||||
|
"/gpu:0": The first GPU of your machine
|
||||||
|
"/gpu:1": The second GPU of your machine
|
||||||
|
'''
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
#Processing Units logs
|
||||||
|
log_device_placement = True
|
||||||
|
|
||||||
|
#num of multiplications to perform
|
||||||
|
n = 10
|
||||||
|
|
||||||
|
'''
|
||||||
|
Example: compute A^n + B^n on 2 GPUs
|
||||||
|
Results on 8 cores with 2 GTX-980:
|
||||||
|
* Single GPU computation time: 0:00:11.277449
|
||||||
|
* Multi GPU computation time: 0:00:07.131701
|
||||||
|
'''
|
||||||
|
#Create random large matrix
|
||||||
|
A = np.random.rand(1e4, 1e4).astype('float32')
|
||||||
|
B = np.random.rand(1e4, 1e4).astype('float32')
|
||||||
|
|
||||||
|
# Creates a graph to store results
|
||||||
|
c1 = []
|
||||||
|
c2 = []
|
||||||
|
|
||||||
|
def matpow(M, n):
|
||||||
|
if n < 1: #Abstract cases where n < 1
|
||||||
|
return M
|
||||||
|
else:
|
||||||
|
return tf.matmul(M, matpow(M, n-1))
|
||||||
|
|
||||||
|
'''
|
||||||
|
Single GPU computing
|
||||||
|
'''
|
||||||
|
with tf.device('/gpu:0'):
|
||||||
|
a = tf.constant(A)
|
||||||
|
b = tf.constant(B)
|
||||||
|
#compute A^n and B^n and store results in c1
|
||||||
|
c1.append(matpow(a, n))
|
||||||
|
c1.append(matpow(b, n))
|
||||||
|
|
||||||
|
with tf.device('/cpu:0'):
|
||||||
|
sum = tf.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n
|
||||||
|
|
||||||
|
t1_1 = datetime.datetime.now()
|
||||||
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
||||||
|
# Runs the op.
|
||||||
|
sess.run(sum)
|
||||||
|
t2_1 = datetime.datetime.now()
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
Multi GPU computing
|
||||||
|
'''
|
||||||
|
#GPU:0 computes A^n
|
||||||
|
with tf.device('/gpu:0'):
|
||||||
|
#compute A^n and store result in c2
|
||||||
|
a = tf.constant(A)
|
||||||
|
c2.append(matpow(a, n))
|
||||||
|
|
||||||
|
#GPU:1 computes B^n
|
||||||
|
with tf.device('/gpu:1'):
|
||||||
|
#compute B^n and store result in c2
|
||||||
|
b = tf.constant(B)
|
||||||
|
c2.append(matpow(b, n))
|
||||||
|
|
||||||
|
with tf.device('/cpu:0'):
|
||||||
|
sum = tf.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n
|
||||||
|
|
||||||
|
t1_2 = datetime.datetime.now()
|
||||||
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
||||||
|
# Runs the op.
|
||||||
|
sess.run(sum)
|
||||||
|
t2_2 = datetime.datetime.now()
|
||||||
|
|
||||||
|
|
||||||
|
print "Single GPU computation time: " + str(t2_1-t1_1)
|
||||||
|
print "Multi GPU computation time: " + str(t2_2-t1_2)
|
Loading…
Reference in New Issue
Block a user