Add TensorFlow logistic regression notebook.

This commit is contained in:
Donne Martin 2015-12-28 07:53:25 -05:00
parent 993f8fdc49
commit 47c1483f46
2 changed files with 228 additions and 0 deletions

View File

@ -96,6 +96,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/1_intro/basic_operations.ipynb) | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. | | [tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/1_intro/basic_operations.ipynb) | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. |
| [tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/linear_regression.ipynb) | Implement linear regression in TensorFlow. | | [tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/linear_regression.ipynb) | Implement linear regression in TensorFlow. |
| [tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/logistic_regression.ipynb) | Implement logistic regression in TensorFlow. |
### tensor-flow-exercises ### tensor-flow-exercises

View File

@ -0,0 +1,227 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Logistic Regression in TensorFlow\n",
"\n",
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
"\n",
"## Setup\n",
"\n",
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
"Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
"Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"# Import MINST data\n",
"import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Parameters\n",
"learning_rate = 0.01\n",
"training_epochs = 25\n",
"batch_size = 100\n",
"display_step = 1"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# tf Graph Input\n",
"x = tf.placeholder(\"float\", [None, 784]) # mnist data image of shape 28*28=784\n",
"y = tf.placeholder(\"float\", [None, 10]) # 0-9 digits recognition => 10 classes"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create model\n",
"\n",
"# Set model weights\n",
"W = tf.Variable(tf.zeros([784, 10]))\n",
"b = tf.Variable(tf.zeros([10]))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Construct model\n",
"activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Minimize error using cross entropy\n",
"# Cross entropy\n",
"cost = -tf.reduce_sum(y*tf.log(activation)) \n",
"# Gradient Descent\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Initializing the variables\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 0001 cost= 29.860479714\n",
"Epoch: 0002 cost= 22.080549484\n",
"Epoch: 0003 cost= 21.237104595\n",
"Epoch: 0004 cost= 20.460196280\n",
"Epoch: 0005 cost= 20.185128237\n",
"Epoch: 0006 cost= 19.940297202\n",
"Epoch: 0007 cost= 19.645111119\n",
"Epoch: 0008 cost= 19.507218031\n",
"Epoch: 0009 cost= 19.389794492\n",
"Epoch: 0010 cost= 19.177005816\n",
"Epoch: 0011 cost= 19.082493615\n",
"Epoch: 0012 cost= 19.072873598\n",
"Epoch: 0013 cost= 18.938005402\n",
"Epoch: 0014 cost= 18.891806430\n",
"Epoch: 0015 cost= 18.839480221\n",
"Epoch: 0016 cost= 18.769349510\n",
"Epoch: 0017 cost= 18.590865587\n",
"Epoch: 0018 cost= 18.623413677\n",
"Epoch: 0019 cost= 18.546149085\n",
"Epoch: 0020 cost= 18.432274895\n",
"Epoch: 0021 cost= 18.358189004\n",
"Epoch: 0022 cost= 18.380014628\n",
"Epoch: 0023 cost= 18.499993471\n",
"Epoch: 0024 cost= 18.386477311\n",
"Epoch: 0025 cost= 18.258080609\n",
"Optimization Finished!\n",
"Accuracy: 0.9048\n"
]
}
],
"source": [
"# Launch the graph\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" # Training cycle\n",
" for epoch in range(training_epochs):\n",
" avg_cost = 0.\n",
" total_batch = int(mnist.train.num_examples/batch_size)\n",
" # Loop over all batches\n",
" for i in range(total_batch):\n",
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
" # Fit training using batch data\n",
" sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})\n",
" # Compute average loss\n",
" avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch\n",
" # Display logs per epoch step\n",
" if epoch % display_step == 0:\n",
" print \"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost)\n",
"\n",
" print \"Optimization Finished!\"\n",
"\n",
" # Test model\n",
" correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))\n",
" # Calculate accuracy\n",
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}