Tweaked repo description. Reordered sections. Renamed references to credits.

This commit is contained in:
Donne Martin 2015-04-15 14:44:46 -04:00
parent 8bc825b96d
commit 47a835f284

View File

@ -3,37 +3,24 @@
</p> </p>
# ipython-data-notebooks # ipython-data-notebooks
Continually updated IPython Data Science Notebooks geared towards processing big data (AWS, Spark, Hadoop MapReduce, HDFS, Linux command line, Python, NumPy, pandas, matplotlib, SciPy, scikit-learn, Kaggle). Continually updated IPython Data Science Notebooks: Spark, Hadoop MapReduce, HDFS, AWS, Kaggle, scikit-learn, matplotlib, pandas, NumPy, SciPy, Python, and various command lines.
## Index ## Index
* [kaggle](#kaggle) * [spark and hdfs](#spark)
* [spark](#spark) * [hadoop mapreduce](#aws)
* [hadoop mapreduce: python streaming](#aws)
* [amazon web services](#aws) * [amazon web services](#aws)
* [python](#python-core) * [kaggle](#kaggle)
* [pandas](#pandas)
* [matplotlib](#matplotlib)
* [scikit-learn](#scikit-learn) * [scikit-learn](#scikit-learn)
* [matplotlib](#matplotlib)
* [pandas](#pandas)
* [numpy](#numpy) * [numpy](#numpy)
* [scipy](#scipy) * [scipy](#scipy)
* [python](#python-core)
* [command lines](#commands) * [command lines](#commands)
* [references](#references) * [credits](#credits)
* [license](#license) * [license](#license)
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
</p>
## kaggle
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions.
| Notebook | Description |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
<br/> <br/>
<p align="center"> <p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png"> <img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png">
@ -55,7 +42,7 @@ IPython Notebook(s) demonstrating spark and HDFS functionality.
## aws ## aws
IPython Notebook(s) demonstrating Amazon Web Services functionality. IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
| Notebook | Description | | Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
@ -69,35 +56,33 @@ IPython Notebook(s) demonstrating Amazon Web Services functionality.
<br/> <br/>
<p align="center"> <p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png"> <img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
</p> </p>
## python-core ## kaggle
IPython Notebook(s) demonstrating core Python functionality geared towards data analysis. IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions.
| Notebook | Description | | Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------| |-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs.ipynb) | Tuples, lists, dicts, sets. | | [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs_utils.ipynb) | Slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
| [functions](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/functions.ipynb) | Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/unit_tests.ipynb) | Nose unit tests. |
<br/> <br/>
<p align="center"> <p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png"> <img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png">
</p>
<br/>
<p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png">
</p> </p>
## pandas ## scikit-learn
IPython Notebook(s) demonstrating pandas functionality. IPython Notebook(s) demonstrating scikit-learn functionality.
| Notebook | Description | | Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. | | [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
<br/> <br/>
<p align="center"> <p align="center">
@ -114,16 +99,18 @@ IPython Notebook(s) demonstrating matplotlib functionality.
<br/> <br/>
<p align="center"> <p align="center">
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png"> <img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png">
</p> </p>
## scikit-learn ## pandas
IPython Notebook(s) demonstrating scikit-learn functionality. IPython Notebook(s) demonstrating pandas functionality.
| Notebook | Description | | Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. | | [pandas](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
<br/> <br/>
<p align="center"> <p align="center">
@ -152,6 +139,18 @@ IPython Notebook(s) demonstrating NumPy functionality.
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png"> <img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png">
</p> </p>
## python-core
IPython Notebook(s) demonstrating core Python functionality geared towards data analysis.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs.ipynb) | Tuples, lists, dicts, sets. |
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs_utils.ipynb) | Slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
| [functions](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/functions.ipynb) | Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/unit_tests.ipynb) | Nose unit tests. |
## commands ## commands
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc. IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
@ -165,11 +164,11 @@ IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
| [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. | | [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. | | [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
## references ## credits
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney * [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406) by Willi Richert, Luis Pedro Coelho
* [Programming Collective Intelligence: Building Smart Web 2.0 Applications](http://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/) by Toby Segaran * [Programming Collective Intelligence: Building Smart Web 2.0 Applications](http://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/) by Toby Segaran
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406) by Willi Richert, Luis Pedro Coelho
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas * [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel * [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
* [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116) by Allen Downey * [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116) by Allen Downey