mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Tweaked repo description. Reordered sections. Renamed references to credits.
This commit is contained in:
parent
8bc825b96d
commit
47a835f284
89
README.md
89
README.md
@ -3,37 +3,24 @@
|
|||||||
</p>
|
</p>
|
||||||
|
|
||||||
# ipython-data-notebooks
|
# ipython-data-notebooks
|
||||||
Continually updated IPython Data Science Notebooks geared towards processing big data (AWS, Spark, Hadoop MapReduce, HDFS, Linux command line, Python, NumPy, pandas, matplotlib, SciPy, scikit-learn, Kaggle).
|
Continually updated IPython Data Science Notebooks: Spark, Hadoop MapReduce, HDFS, AWS, Kaggle, scikit-learn, matplotlib, pandas, NumPy, SciPy, Python, and various command lines.
|
||||||
|
|
||||||
## Index
|
## Index
|
||||||
|
|
||||||
* [kaggle](#kaggle)
|
* [spark and hdfs](#spark)
|
||||||
* [spark](#spark)
|
* [hadoop mapreduce](#aws)
|
||||||
* [hadoop mapreduce: python streaming](#aws)
|
|
||||||
* [amazon web services](#aws)
|
* [amazon web services](#aws)
|
||||||
* [python](#python-core)
|
* [kaggle](#kaggle)
|
||||||
* [pandas](#pandas)
|
|
||||||
* [matplotlib](#matplotlib)
|
|
||||||
* [scikit-learn](#scikit-learn)
|
* [scikit-learn](#scikit-learn)
|
||||||
|
* [matplotlib](#matplotlib)
|
||||||
|
* [pandas](#pandas)
|
||||||
* [numpy](#numpy)
|
* [numpy](#numpy)
|
||||||
* [scipy](#scipy)
|
* [scipy](#scipy)
|
||||||
|
* [python](#python-core)
|
||||||
* [command lines](#commands)
|
* [command lines](#commands)
|
||||||
* [references](#references)
|
* [credits](#credits)
|
||||||
* [license](#license)
|
* [license](#license)
|
||||||
|
|
||||||
<br/>
|
|
||||||
<p align="center">
|
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## kaggle
|
|
||||||
|
|
||||||
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions.
|
|
||||||
|
|
||||||
| Notebook | Description |
|
|
||||||
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
|
||||||
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/spark.png">
|
||||||
@ -55,7 +42,7 @@ IPython Notebook(s) demonstrating spark and HDFS functionality.
|
|||||||
|
|
||||||
## aws
|
## aws
|
||||||
|
|
||||||
IPython Notebook(s) demonstrating Amazon Web Services functionality.
|
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
|
||||||
|
|
||||||
| Notebook | Description |
|
| Notebook | Description |
|
||||||
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
@ -69,35 +56,33 @@ IPython Notebook(s) demonstrating Amazon Web Services functionality.
|
|||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/kaggle.png">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
## python-core
|
## kaggle
|
||||||
|
|
||||||
IPython Notebook(s) demonstrating core Python functionality geared towards data analysis.
|
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions.
|
||||||
|
|
||||||
| Notebook | Description |
|
| Notebook | Description |
|
||||||
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|
||||||
| [data structures](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs.ipynb) | Tuples, lists, dicts, sets. |
|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
|
||||||
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs_utils.ipynb) | Slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
|
|
||||||
| [functions](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/functions.ipynb) | Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
|
|
||||||
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
|
|
||||||
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/unit_tests.ipynb) | Nose unit tests. |
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/python.png">
|
||||||
|
</p>
|
||||||
|
<br/>
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
## pandas
|
## scikit-learn
|
||||||
|
|
||||||
IPython Notebook(s) demonstrating pandas functionality.
|
IPython Notebook(s) demonstrating scikit-learn functionality.
|
||||||
|
|
||||||
| Notebook | Description |
|
| Notebook | Description |
|
||||||
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| [pandas](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
|
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
||||||
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
|
|
||||||
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
@ -114,16 +99,18 @@ IPython Notebook(s) demonstrating matplotlib functionality.
|
|||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/scikitlearn.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/pandas.png">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
## scikit-learn
|
## pandas
|
||||||
|
|
||||||
IPython Notebook(s) demonstrating scikit-learn functionality.
|
IPython Notebook(s) demonstrating pandas functionality.
|
||||||
|
|
||||||
| Notebook | Description |
|
| Notebook | Description |
|
||||||
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| [scikit-learn-intro](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
|
||||||
|
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
|
||||||
|
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<p align="center">
|
<p align="center">
|
||||||
@ -152,6 +139,18 @@ IPython Notebook(s) demonstrating NumPy functionality.
|
|||||||
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png">
|
<img src="https://raw.githubusercontent.com/donnemartin/ipython-data-notebooks/master/images/commands.png">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
## python-core
|
||||||
|
|
||||||
|
IPython Notebook(s) demonstrating core Python functionality geared towards data analysis.
|
||||||
|
|
||||||
|
| Notebook | Description |
|
||||||
|
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs.ipynb) | Tuples, lists, dicts, sets. |
|
||||||
|
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/structs_utils.ipynb) | Slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
|
||||||
|
| [functions](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/functions.ipynb) | Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
|
||||||
|
| [datetime](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/datetime.ipynb) | Datetime, strftime, strptime, timedelta. |
|
||||||
|
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/python-core/unit_tests.ipynb) | Nose unit tests. |
|
||||||
|
|
||||||
## commands
|
## commands
|
||||||
|
|
||||||
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
|
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
|
||||||
@ -165,11 +164,11 @@ IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
|
|||||||
| [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
|
| [ruby](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
|
||||||
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
|
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
|
||||||
|
|
||||||
## references
|
## credits
|
||||||
|
|
||||||
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
|
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
|
||||||
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406) by Willi Richert, Luis Pedro Coelho
|
|
||||||
* [Programming Collective Intelligence: Building Smart Web 2.0 Applications](http://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/) by Toby Segaran
|
* [Programming Collective Intelligence: Building Smart Web 2.0 Applications](http://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325/) by Toby Segaran
|
||||||
|
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406) by Willi Richert, Luis Pedro Coelho
|
||||||
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
|
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
|
||||||
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
|
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
|
||||||
* [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116) by Allen Downey
|
* [Think Stats](http://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116) by Allen Downey
|
||||||
|
Loading…
x
Reference in New Issue
Block a user