From 3a5c12bd85b9eb219e0e52b36c5ea7f7d7e649d0 Mon Sep 17 00:00:00 2001 From: Anish Shah Date: Mon, 4 Jan 2016 20:36:24 +0530 Subject: [PATCH] Change to tf.dtype --- .../notebooks/3_neural_networks/alexnet.ipynb | 18 +++++++++--------- .../convolutional_network.ipynb | 18 +++++++++--------- .../3_neural_networks/recurrent_network.ipynb | 12 ++++++------ 3 files changed, 24 insertions(+), 24 deletions(-) diff --git a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb index d3b600d..2e28a0c 100644 --- a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb +++ b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb @@ -86,9 +86,9 @@ "outputs": [], "source": [ "# tf Graph input\n", - "x = tf.placeholder(tf.types.float32, [None, n_input])\n", - "y = tf.placeholder(tf.types.float32, [None, n_classes])\n", - "keep_prob = tf.placeholder(tf.types.float32) # dropout (keep probability)" + "x = tf.placeholder(tf.float32, [None, n_input])\n", + "y = tf.placeholder(tf.float32, [None, n_classes])\n", + "keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)" ] }, { @@ -218,7 +218,7 @@ "source": [ "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", - "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))" + "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { @@ -323,21 +323,21 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 2", "language": "python", - "name": "python3" + "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 3 + "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.4.3" + "pygments_lexer": "ipython2", + "version": "2.7.5+" } }, "nbformat": 4, diff --git a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb index 22299fc..967550a 100644 --- a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb +++ b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb @@ -86,9 +86,9 @@ "outputs": [], "source": [ "# tf Graph input\n", - "x = tf.placeholder(tf.types.float32, [None, n_input])\n", - "y = tf.placeholder(tf.types.float32, [None, n_classes])\n", - "keep_prob = tf.placeholder(tf.types.float32) #dropout (keep probability)" + "x = tf.placeholder(tf.float32, [None, n_input])\n", + "y = tf.placeholder(tf.float32, [None, n_classes])\n", + "keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)" ] }, { @@ -201,7 +201,7 @@ "source": [ "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", - "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))" + "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { @@ -299,21 +299,21 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 2", "language": "python", - "name": "python3" + "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 3 + "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.4.3" + "pygments_lexer": "ipython2", + "version": "2.7.5+" } }, "nbformat": 4, diff --git a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb index e8a7a14..41e3e1f 100644 --- a/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb +++ b/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb @@ -137,7 +137,7 @@ "\n", "# Evaluate model\n", "correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n", - "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))" + "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))" ] }, { @@ -272,21 +272,21 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 2", "language": "python", - "name": "python3" + "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 3 + "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.4.3" + "pygments_lexer": "ipython2", + "version": "2.7.5+" } }, "nbformat": 4,