mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Add Theano intro notebook.
This commit is contained in:
parent
5172b94e91
commit
3890c74403
|
@ -93,6 +93,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
|
|||
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
|
||||
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
|
||||
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
|
||||
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
|
||||
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
|
||||
|
||||
<br/>
|
||||
|
|
3
deep-learning/theano-tutorial/intro_theano/Makefile
Normal file
3
deep-learning/theano-tutorial/intro_theano/Makefile
Normal file
|
@ -0,0 +1,3 @@
|
|||
intro_theano.pdf: slides_source/intro_theano.tex
|
||||
cd slides_source; pdflatex --shell-escape intro_theano.tex
|
||||
mv slides_source/intro_theano.pdf .
|
882
deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb
Normal file
882
deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
deep-learning/theano-tutorial/intro_theano/intro_theano.pdf
Normal file
BIN
deep-learning/theano-tutorial/intro_theano/intro_theano.pdf
Normal file
Binary file not shown.
140
deep-learning/theano-tutorial/intro_theano/utils.py
Normal file
140
deep-learning/theano-tutorial/intro_theano/utils.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
""" This file contains different utility functions that are not connected
|
||||
in anyway to the networks presented in the tutorials, but rather help in
|
||||
processing the outputs into a more understandable way.
|
||||
|
||||
For example ``tile_raster_images`` helps in generating a easy to grasp
|
||||
image from a set of samples or weights.
|
||||
"""
|
||||
|
||||
|
||||
import numpy
|
||||
from six.moves import xrange
|
||||
|
||||
|
||||
def scale_to_unit_interval(ndar, eps=1e-8):
|
||||
""" Scales all values in the ndarray ndar to be between 0 and 1 """
|
||||
ndar = ndar.copy()
|
||||
ndar -= ndar.min()
|
||||
ndar *= 1.0 / (ndar.max() + eps)
|
||||
return ndar
|
||||
|
||||
|
||||
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
|
||||
scale_rows_to_unit_interval=True,
|
||||
output_pixel_vals=True):
|
||||
"""
|
||||
Transform an array with one flattened image per row, into an array in
|
||||
which images are reshaped and layed out like tiles on a floor.
|
||||
|
||||
This function is useful for visualizing datasets whose rows are images,
|
||||
and also columns of matrices for transforming those rows
|
||||
(such as the first layer of a neural net).
|
||||
|
||||
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
|
||||
be 2-D ndarrays or None;
|
||||
:param X: a 2-D array in which every row is a flattened image.
|
||||
|
||||
:type img_shape: tuple; (height, width)
|
||||
:param img_shape: the original shape of each image
|
||||
|
||||
:type tile_shape: tuple; (rows, cols)
|
||||
:param tile_shape: the number of images to tile (rows, cols)
|
||||
|
||||
:param output_pixel_vals: if output should be pixel values (i.e. int8
|
||||
values) or floats
|
||||
|
||||
:param scale_rows_to_unit_interval: if the values need to be scaled before
|
||||
being plotted to [0,1] or not
|
||||
|
||||
|
||||
:returns: array suitable for viewing as an image.
|
||||
(See:`Image.fromarray`.)
|
||||
:rtype: a 2-d array with same dtype as X.
|
||||
|
||||
"""
|
||||
|
||||
assert len(img_shape) == 2
|
||||
assert len(tile_shape) == 2
|
||||
assert len(tile_spacing) == 2
|
||||
|
||||
# The expression below can be re-written in a more C style as
|
||||
# follows :
|
||||
#
|
||||
# out_shape = [0,0]
|
||||
# out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
|
||||
# tile_spacing[0]
|
||||
# out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
|
||||
# tile_spacing[1]
|
||||
out_shape = [
|
||||
(ishp + tsp) * tshp - tsp
|
||||
for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)
|
||||
]
|
||||
|
||||
if isinstance(X, tuple):
|
||||
assert len(X) == 4
|
||||
# Create an output numpy ndarray to store the image
|
||||
if output_pixel_vals:
|
||||
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
|
||||
dtype='uint8')
|
||||
else:
|
||||
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
|
||||
dtype=X.dtype)
|
||||
|
||||
#colors default to 0, alpha defaults to 1 (opaque)
|
||||
if output_pixel_vals:
|
||||
channel_defaults = [0, 0, 0, 255]
|
||||
else:
|
||||
channel_defaults = [0., 0., 0., 1.]
|
||||
|
||||
for i in xrange(4):
|
||||
if X[i] is None:
|
||||
# if channel is None, fill it with zeros of the correct
|
||||
# dtype
|
||||
dt = out_array.dtype
|
||||
if output_pixel_vals:
|
||||
dt = 'uint8'
|
||||
out_array[:, :, i] = numpy.zeros(
|
||||
out_shape,
|
||||
dtype=dt
|
||||
) + channel_defaults[i]
|
||||
else:
|
||||
# use a recurrent call to compute the channel and store it
|
||||
# in the output
|
||||
out_array[:, :, i] = tile_raster_images(
|
||||
X[i], img_shape, tile_shape, tile_spacing,
|
||||
scale_rows_to_unit_interval, output_pixel_vals)
|
||||
return out_array
|
||||
|
||||
else:
|
||||
# if we are dealing with only one channel
|
||||
H, W = img_shape
|
||||
Hs, Ws = tile_spacing
|
||||
|
||||
# generate a matrix to store the output
|
||||
dt = X.dtype
|
||||
if output_pixel_vals:
|
||||
dt = 'uint8'
|
||||
out_array = numpy.zeros(out_shape, dtype=dt)
|
||||
|
||||
for tile_row in xrange(tile_shape[0]):
|
||||
for tile_col in xrange(tile_shape[1]):
|
||||
if tile_row * tile_shape[1] + tile_col < X.shape[0]:
|
||||
this_x = X[tile_row * tile_shape[1] + tile_col]
|
||||
if scale_rows_to_unit_interval:
|
||||
# if we should scale values to be between 0 and 1
|
||||
# do this by calling the `scale_to_unit_interval`
|
||||
# function
|
||||
this_img = scale_to_unit_interval(
|
||||
this_x.reshape(img_shape))
|
||||
else:
|
||||
this_img = this_x.reshape(img_shape)
|
||||
# add the slice to the corresponding position in the
|
||||
# output array
|
||||
c = 1
|
||||
if output_pixel_vals:
|
||||
c = 255
|
||||
out_array[
|
||||
tile_row * (H + Hs): tile_row * (H + Hs) + H,
|
||||
tile_col * (W + Ws): tile_col * (W + Ws) + W
|
||||
] = this_img * c
|
||||
return out_array
|
Loading…
Reference in New Issue
Block a user