mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Add Keras notebooks to README
Linked from https://github.com/leriomaggio/deep-learning-keras-tensorflow
This commit is contained in:
parent
7d6fbd796e
commit
23b2f7bd7b
24
README.md
24
README.md
|
@ -129,6 +129,29 @@ Additional TensorFlow tutorials:
|
|||
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
|
||||
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |
|
||||
|
||||
<br/>
|
||||
<p align="center">
|
||||
<img src="http://i.imgur.com/L45Q8c2.jpg">
|
||||
</p>
|
||||
|
||||
### keras-tutorials
|
||||
|
||||
| Notebook | Description |
|
||||
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| keras | Keras is an open source neural network library written in Python. It is capable of running on top of either Tensorflow or Theano. |
|
||||
| [setup](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/0.%20Preamble.ipynb) | Learn about the tutorial goals and how to set up your Keras environment. |
|
||||
| [intro-deep-learning-ann](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/1.1%20Introduction%20-%20Deep%20Learning%20and%20ANN.ipynb) | Get an intro to deep learning with Keras and Artificial Neural Networks (ANN). |
|
||||
| [theano](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/1.2%20Introduction%20-%20Theano.ipynb) | Learn about Theano by working with weights matrices and gradients. |
|
||||
| [keras-otto](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/1.3%20Introduction%20-%20Keras.ipynb) | Learn about Keras by looking at the Kaggle Otto challenge. |
|
||||
| [ann-mnist](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/1.4%20(Extra)%20A%20Simple%20Implementation%20of%20ANN%20for%20MNIST.ipynb) | Review a simple implementation of ANN for MNIST using Keras. |
|
||||
| [conv-nets](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/2.1%20Supervised%20Learning%20-%20ConvNets.ipynb) | Learn about Convolutional Neural Networks (CNNs) with Keras. |
|
||||
| [conv-net-1](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/2.2.1%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20I.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 1. |
|
||||
| [conv-net-2](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/2.2.2%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20II.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 2. |
|
||||
| [keras-models](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/2.3%20Supervised%20Learning%20-%20Famous%20Models%20with%20Keras.ipynb) | Use pre-trained models such as VGG16, VGG19, ResNet50, and Inception v3 with Keras. |
|
||||
| [auto-encoders](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/3.1%20Unsupervised%20Learning%20-%20AutoEncoders%20and%20Embeddings.ipynb) | Learn about Autoencoders with Keras. |
|
||||
| [rnn-lstm](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/3.2%20RNN%20and%20LSTM.ipynb) | Learn about Recurrent Neural Networks (RNNs) with Keras. |
|
||||
| [lstm-sentence-gen](http://nbviewer.ipython.org/github/leriomaggio/deep-learning-keras-tensorflow/blob/master/3.3%20(Extra)%20LSTM%20for%20Sentence%20Generation.ipynb) | Learn about RNNs using Long Short Term Memory (LSTM) networks with Keras. |
|
||||
|
||||
### deep-learning-misc
|
||||
|
||||
| Notebook | Description |
|
||||
|
@ -331,6 +354,7 @@ Notebooks tested with Python 2.7.x.
|
|||
* [TensorFlow Tutorials](https://github.com/alrojo/tensorflow-tutorial) by Alexander R Johansen
|
||||
* [TensorFlow Book](https://github.com/BinRoot/TensorFlow-Book) by Nishant Shukla
|
||||
* [Summer School 2015](https://github.com/mila-udem/summerschool2015) by mila-udem
|
||||
* [Keras tutorials](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio
|
||||
* [Kaggle](https://www.kaggle.com/)
|
||||
* [Yhat Blog](http://blog.yhat.com/)
|
||||
|
||||
|
|
BIN
images/keras.jpg
Normal file
BIN
images/keras.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 8.7 KiB |
Loading…
Reference in New Issue
Block a user