Combined pandas notebooks until pandas I/O and pandas cleaning are further developed.

This commit is contained in:
Donne Martin 2015-06-12 20:51:00 -04:00
parent 0f7fa880a5
commit 1bf68e0689
4 changed files with 889 additions and 948 deletions

View File

@ -125,8 +125,6 @@ IPython Notebook(s) demonstrating pandas functionality.
| Notebook | Description | | Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------| |--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. | | [pandas](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
| [pandas io](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas_io.ipynb) | Input and output operations. |
| [pandas cleaning](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas_clean.ipynb) | Data wrangling operations. |
<br/> <br/>
<p align="center"> <p align="center">

View File

@ -15,7 +15,9 @@
"* Function Application and Mapping\n", "* Function Application and Mapping\n",
"* Sorting and Ranking\n", "* Sorting and Ranking\n",
"* Axis Indices with Duplicate Values\n", "* Axis Indices with Duplicate Values\n",
"* Summarizing and Computing Descriptive Statistics" "* Summarizing and Computing Descriptive Statistics\n",
"* Cleaning Data (Under Construction)\n",
"* Input and Output (Under Construction)"
] ]
}, },
{ {
@ -5749,6 +5751,891 @@
"source": [ "source": [
"df_6.sum(axis=1, skipna=False)" "df_6.sum(axis=1, skipna=False)"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleaning Data (Under Construction)\n",
"* Replace\n",
"* Drop\n",
"* Concatenate"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from pandas import Series, DataFrame\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup a DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MD</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MD</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VA 2012\n",
"1 5.1 VA 2013\n",
"2 5.2 VA 2014\n",
"3 4.0 MD 2014\n",
"4 4.1 MD 2015"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_1 = {'state' : ['VA', 'VA', 'VA', 'MD', 'MD'],\n",
" 'year' : [2012, 2013, 2014, 2014, 2015],\n",
" 'population' : [5.0, 5.1, 5.2, 4.0, 4.1]}\n",
"df_1 = DataFrame(data_1)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Replace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Replace all occurrences of a string with another string, in place (no copy):"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MD</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MD</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MD 2014\n",
"4 4.1 MD 2015"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.replace('VA', 'VIRGINIA', inplace=True)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In a specified column, replace all occurrences of a string with another string, in place (no copy):"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MARYLAND 2014\n",
"4 4.1 MARYLAND 2015"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.replace({'state' : { 'MD' : 'MARYLAND' }}, inplace=True)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Drop"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Drop the 'population' column and return a copy of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state year\n",
"0 VIRGINIA 2012\n",
"1 VIRGINIA 2013\n",
"2 VIRGINIA 2014\n",
"3 MARYLAND 2014\n",
"4 MARYLAND 2015"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_2 = df_1.drop('population', axis=1)\n",
"df_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Concatenate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Concatenate two DataFrames:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 6.0</td>\n",
" <td> NY</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 6.1</td>\n",
" <td> NY</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 6.2</td>\n",
" <td> NY</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 3.0</td>\n",
" <td> FL</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 3.1</td>\n",
" <td> FL</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 6.0 NY 2012\n",
"1 6.1 NY 2013\n",
"2 6.2 NY 2014\n",
"3 3.0 FL 2014\n",
"4 3.1 FL 2015"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_2 = {'state' : ['NY', 'NY', 'NY', 'FL', 'FL'],\n",
" 'year' : [2012, 2013, 2014, 2014, 2015],\n",
" 'population' : [6.0, 6.1, 6.2, 3.0, 3.1]}\n",
"df_3 = DataFrame(data_2)\n",
"df_3"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 6.0</td>\n",
" <td> NY</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 6.1</td>\n",
" <td> NY</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 6.2</td>\n",
" <td> NY</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 3.0</td>\n",
" <td> FL</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 3.1</td>\n",
" <td> FL</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MARYLAND 2014\n",
"4 4.1 MARYLAND 2015\n",
"0 6.0 NY 2012\n",
"1 6.1 NY 2013\n",
"2 6.2 NY 2014\n",
"3 3.0 FL 2014\n",
"4 3.1 FL 2015"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_4 = pd.concat([df_1, df_3])\n",
"df_4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Input and Output (Under Construction)\n",
"* Reading\n",
"* Writing"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from pandas import Series, DataFrame\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reading"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Read data from a CSV file into a DataFrame (use sep='\\t' for TSV):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_1 = pd.read_csv(\"../data/ozone.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get a summary of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ozone</th>\n",
" <th>Solar.R</th>\n",
" <th>Wind</th>\n",
" <th>Temp</th>\n",
" <th>Month</th>\n",
" <th>Day</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td> 116.000000</td>\n",
" <td> 146.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td> 42.129310</td>\n",
" <td> 185.931507</td>\n",
" <td> 9.957516</td>\n",
" <td> 77.882353</td>\n",
" <td> 6.993464</td>\n",
" <td> 15.803922</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td> 32.987885</td>\n",
" <td> 90.058422</td>\n",
" <td> 3.523001</td>\n",
" <td> 9.465270</td>\n",
" <td> 1.416522</td>\n",
" <td> 8.864520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td> 1.000000</td>\n",
" <td> 7.000000</td>\n",
" <td> 1.700000</td>\n",
" <td> 56.000000</td>\n",
" <td> 5.000000</td>\n",
" <td> 1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td> 18.000000</td>\n",
" <td> 115.750000</td>\n",
" <td> 7.400000</td>\n",
" <td> 72.000000</td>\n",
" <td> 6.000000</td>\n",
" <td> 8.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td> 31.500000</td>\n",
" <td> 205.000000</td>\n",
" <td> 9.700000</td>\n",
" <td> 79.000000</td>\n",
" <td> 7.000000</td>\n",
" <td> 16.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td> 63.250000</td>\n",
" <td> 258.750000</td>\n",
" <td> 11.500000</td>\n",
" <td> 85.000000</td>\n",
" <td> 8.000000</td>\n",
" <td> 23.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td> 168.000000</td>\n",
" <td> 334.000000</td>\n",
" <td> 20.700000</td>\n",
" <td> 97.000000</td>\n",
" <td> 9.000000</td>\n",
" <td> 31.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Ozone Solar.R Wind Temp Month Day\n",
"count 116.000000 146.000000 153.000000 153.000000 153.000000 153.000000\n",
"mean 42.129310 185.931507 9.957516 77.882353 6.993464 15.803922\n",
"std 32.987885 90.058422 3.523001 9.465270 1.416522 8.864520\n",
"min 1.000000 7.000000 1.700000 56.000000 5.000000 1.000000\n",
"25% 18.000000 115.750000 7.400000 72.000000 6.000000 8.000000\n",
"50% 31.500000 205.000000 9.700000 79.000000 7.000000 16.000000\n",
"75% 63.250000 258.750000 11.500000 85.000000 8.000000 23.000000\n",
"max 168.000000 334.000000 20.700000 97.000000 9.000000 31.000000"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"List the first five rows of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ozone</th>\n",
" <th>Solar.R</th>\n",
" <th>Wind</th>\n",
" <th>Temp</th>\n",
" <th>Month</th>\n",
" <th>Day</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 41</td>\n",
" <td> 190</td>\n",
" <td> 7.4</td>\n",
" <td> 67</td>\n",
" <td> 5</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 36</td>\n",
" <td> 118</td>\n",
" <td> 8.0</td>\n",
" <td> 72</td>\n",
" <td> 5</td>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 12</td>\n",
" <td> 149</td>\n",
" <td> 12.6</td>\n",
" <td> 74</td>\n",
" <td> 5</td>\n",
" <td> 3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 18</td>\n",
" <td> 313</td>\n",
" <td> 11.5</td>\n",
" <td> 62</td>\n",
" <td> 5</td>\n",
" <td> 4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>NaN</td>\n",
" <td> NaN</td>\n",
" <td> 14.3</td>\n",
" <td> 56</td>\n",
" <td> 5</td>\n",
" <td> 5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Ozone Solar.R Wind Temp Month Day\n",
"0 41 190 7.4 67 5 1\n",
"1 36 118 8.0 72 5 2\n",
"2 12 149 12.6 74 5 3\n",
"3 18 313 11.5 62 5 4\n",
"4 NaN NaN 14.3 56 5 5"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Writing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a copy of the CSV file, encoded in UTF-8 and hiding the index and header labels:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_1.to_csv('../data/ozone_copy.csv', \n",
" encoding='utf-8', \n",
" index=False, \n",
" header=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"View the data directory:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 16\r\n",
"-rw-r--r--@ 1 dmartin 1443163707 2902 Dec 26 2012 ozone.csv\r\n",
"-rw-r--r-- 1 dmartin 1443163707 3324 Feb 14 06:40 ozone_copy.csv\r\n"
]
}
],
"source": [
"!ls -l ../data/"
]
} }
], ],
"metadata": { "metadata": {
@ -5767,7 +6654,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython2", "pygments_lexer": "ipython2",
"version": "2.7.9" "version": "2.7.10"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -1,591 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pandas Cleaning\n",
"* Replace\n",
"* Drop\n",
"* Concatenate"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from pandas import Series, DataFrame\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup a DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MD</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MD</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VA 2012\n",
"1 5.1 VA 2013\n",
"2 5.2 VA 2014\n",
"3 4.0 MD 2014\n",
"4 4.1 MD 2015"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_1 = {'state' : ['VA', 'VA', 'VA', 'MD', 'MD'],\n",
" 'year' : [2012, 2013, 2014, 2014, 2015],\n",
" 'population' : [5.0, 5.1, 5.2, 4.0, 4.1]}\n",
"df_1 = DataFrame(data_1)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Replace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Replace all occurrences of a string with another string, in place (no copy):"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MD</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MD</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MD 2014\n",
"4 4.1 MD 2015"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.replace('VA', 'VIRGINIA', inplace=True)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In a specified column, replace all occurrences of a string with another string, in place (no copy):"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MARYLAND 2014\n",
"4 4.1 MARYLAND 2015"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.replace({'state' : { 'MD' : 'MARYLAND' }}, inplace=True)\n",
"df_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Drop"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Drop the 'population' column and return a copy of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" state year\n",
"0 VIRGINIA 2012\n",
"1 VIRGINIA 2013\n",
"2 VIRGINIA 2014\n",
"3 MARYLAND 2014\n",
"4 MARYLAND 2015"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_2 = df_1.drop('population', axis=1)\n",
"df_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Concatenate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Concatenate two DataFrames:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 6.0</td>\n",
" <td> NY</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 6.1</td>\n",
" <td> NY</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 6.2</td>\n",
" <td> NY</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 3.0</td>\n",
" <td> FL</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 3.1</td>\n",
" <td> FL</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 6.0 NY 2012\n",
"1 6.1 NY 2013\n",
"2 6.2 NY 2014\n",
"3 3.0 FL 2014\n",
"4 3.1 FL 2015"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_2 = {'state' : ['NY', 'NY', 'NY', 'FL', 'FL'],\n",
" 'year' : [2012, 2013, 2014, 2014, 2015],\n",
" 'population' : [6.0, 6.1, 6.2, 3.0, 3.1]}\n",
"df_3 = DataFrame(data_2)\n",
"df_3"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>population</th>\n",
" <th>state</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 5.0</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 5.1</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 5.2</td>\n",
" <td> VIRGINIA</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 4.0</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 4.1</td>\n",
" <td> MARYLAND</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 6.0</td>\n",
" <td> NY</td>\n",
" <td> 2012</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 6.1</td>\n",
" <td> NY</td>\n",
" <td> 2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 6.2</td>\n",
" <td> NY</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 3.0</td>\n",
" <td> FL</td>\n",
" <td> 2014</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> 3.1</td>\n",
" <td> FL</td>\n",
" <td> 2015</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" population state year\n",
"0 5.0 VIRGINIA 2012\n",
"1 5.1 VIRGINIA 2013\n",
"2 5.2 VIRGINIA 2014\n",
"3 4.0 MARYLAND 2014\n",
"4 4.1 MARYLAND 2015\n",
"0 6.0 NY 2012\n",
"1 6.1 NY 2013\n",
"2 6.2 NY 2014\n",
"3 3.0 FL 2014\n",
"4 3.1 FL 2015"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_4 = pd.concat([df_1, df_3])\n",
"df_4"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -1,353 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pandas I/O\n",
"* Reading\n",
"* Writing"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from pandas import Series, DataFrame\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reading"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Read data from a CSV file into a DataFrame (use sep='\\t' for TSV):"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_1 = pd.read_csv(\"../data/ozone.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get a summary of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ozone</th>\n",
" <th>Solar.R</th>\n",
" <th>Wind</th>\n",
" <th>Temp</th>\n",
" <th>Month</th>\n",
" <th>Day</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td> 116.000000</td>\n",
" <td> 146.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" <td> 153.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td> 42.129310</td>\n",
" <td> 185.931507</td>\n",
" <td> 9.957516</td>\n",
" <td> 77.882353</td>\n",
" <td> 6.993464</td>\n",
" <td> 15.803922</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td> 32.987885</td>\n",
" <td> 90.058422</td>\n",
" <td> 3.523001</td>\n",
" <td> 9.465270</td>\n",
" <td> 1.416522</td>\n",
" <td> 8.864520</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td> 1.000000</td>\n",
" <td> 7.000000</td>\n",
" <td> 1.700000</td>\n",
" <td> 56.000000</td>\n",
" <td> 5.000000</td>\n",
" <td> 1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td> 18.000000</td>\n",
" <td> 115.750000</td>\n",
" <td> 7.400000</td>\n",
" <td> 72.000000</td>\n",
" <td> 6.000000</td>\n",
" <td> 8.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td> 31.500000</td>\n",
" <td> 205.000000</td>\n",
" <td> 9.700000</td>\n",
" <td> 79.000000</td>\n",
" <td> 7.000000</td>\n",
" <td> 16.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td> 63.250000</td>\n",
" <td> 258.750000</td>\n",
" <td> 11.500000</td>\n",
" <td> 85.000000</td>\n",
" <td> 8.000000</td>\n",
" <td> 23.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td> 168.000000</td>\n",
" <td> 334.000000</td>\n",
" <td> 20.700000</td>\n",
" <td> 97.000000</td>\n",
" <td> 9.000000</td>\n",
" <td> 31.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Ozone Solar.R Wind Temp Month Day\n",
"count 116.000000 146.000000 153.000000 153.000000 153.000000 153.000000\n",
"mean 42.129310 185.931507 9.957516 77.882353 6.993464 15.803922\n",
"std 32.987885 90.058422 3.523001 9.465270 1.416522 8.864520\n",
"min 1.000000 7.000000 1.700000 56.000000 5.000000 1.000000\n",
"25% 18.000000 115.750000 7.400000 72.000000 6.000000 8.000000\n",
"50% 31.500000 205.000000 9.700000 79.000000 7.000000 16.000000\n",
"75% 63.250000 258.750000 11.500000 85.000000 8.000000 23.000000\n",
"max 168.000000 334.000000 20.700000 97.000000 9.000000 31.000000"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"List the first five rows of the DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Ozone</th>\n",
" <th>Solar.R</th>\n",
" <th>Wind</th>\n",
" <th>Temp</th>\n",
" <th>Month</th>\n",
" <th>Day</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> 41</td>\n",
" <td> 190</td>\n",
" <td> 7.4</td>\n",
" <td> 67</td>\n",
" <td> 5</td>\n",
" <td> 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> 36</td>\n",
" <td> 118</td>\n",
" <td> 8.0</td>\n",
" <td> 72</td>\n",
" <td> 5</td>\n",
" <td> 2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> 12</td>\n",
" <td> 149</td>\n",
" <td> 12.6</td>\n",
" <td> 74</td>\n",
" <td> 5</td>\n",
" <td> 3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> 18</td>\n",
" <td> 313</td>\n",
" <td> 11.5</td>\n",
" <td> 62</td>\n",
" <td> 5</td>\n",
" <td> 4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>NaN</td>\n",
" <td> NaN</td>\n",
" <td> 14.3</td>\n",
" <td> 56</td>\n",
" <td> 5</td>\n",
" <td> 5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Ozone Solar.R Wind Temp Month Day\n",
"0 41 190 7.4 67 5 1\n",
"1 36 118 8.0 72 5 2\n",
"2 12 149 12.6 74 5 3\n",
"3 18 313 11.5 62 5 4\n",
"4 NaN NaN 14.3 56 5 5"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_1.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Writing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a copy of the CSV file, encoded in UTF-8 and hiding the index and header labels:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_1.to_csv('../data/ozone_copy.csv', \n",
" encoding='utf-8', \n",
" index=False, \n",
" header=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"View the data directory:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 16\r\n",
"-rw-r--r--@ 1 dmartin 1443163707 2902 Dec 26 2012 ozone.csv\r\n",
"-rw-r--r-- 1 dmartin 1443163707 3324 Feb 14 06:40 ozone_copy.csv\r\n"
]
}
],
"source": [
"!ls -l ../data/"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}