diff --git a/scikit-learn/fig_code/__init__.py~ b/scikit-learn/fig_code/__init__.py~ deleted file mode 100644 index 9d6fdd3..0000000 --- a/scikit-learn/fig_code/__init__.py~ +++ /dev/null @@ -1,4 +0,0 @@ -from .sgd_separator import plot_sgd_separator -from .linear_regression import plot_linear_regression -from .ML_flow_chart import plot_supervised_chart, plot_unsupervised_chart -from .helpers import plot_iris_knn diff --git a/scikit-learn/fig_code/helpers.py~ b/scikit-learn/fig_code/helpers.py~ deleted file mode 100644 index a220917..0000000 --- a/scikit-learn/fig_code/helpers.py~ +++ /dev/null @@ -1,75 +0,0 @@ -""" -Small helpers for code that is not shown in the notebooks -""" - -from sklearn import neighbors, datasets, linear_model -import pylab as pl -import numpy as np -from matplotlib.colors import ListedColormap - -# Create color maps for 3-class classification problem, as with iris -cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) -cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) - -def plot_iris_knn(): - iris = datasets.load_iris() - X = iris.data[:, :2] # we only take the first two features. We could - # avoid this ugly slicing by using a two-dim dataset - y = iris.target - - knn = neighbors.KNeighborsClassifier(n_neighbors=3) - knn.fit(X, y) - - x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 - y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 - xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), - np.linspace(y_min, y_max, 100)) - Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) - - # Put the result into a color plot - Z = Z.reshape(xx.shape) - pl.figure() - pl.pcolormesh(xx, yy, Z, cmap=cmap_light) - - # Plot also the training points - pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) - pl.xlabel('sepal length (cm)') - pl.ylabel('sepal width (cm)') - pl.axis('tight') - - -def plot_polynomial_regression(): - rng = np.random.RandomState(0) - x = 2*rng.rand(100) - 1 - - f = lambda t: 1.2 * t**2 + .1 * t**3 - .4 * t **5 - .5 * t ** 9 - y = f(x) + .4 * rng.normal(size=100) - - x_test = np.linspace(-1, 1, 100) - - pl.figure() - pl.scatter(x, y, s=4) - - X = np.array([x**i for i in range(5)]).T - X_test = np.array([x_test**i for i in range(5)]).T - regr = linear_model.LinearRegression() - regr.fit(X, y) - pl.plot(x_test, regr.predict(X_test), label='4th order') - - X = np.array([x**i for i in range(10)]).T - X_test = np.array([x_test**i for i in range(10)]).T - regr = linear_model.LinearRegression() - regr.fit(X, y) - pl.plot(x_test, regr.predict(X_test), label='9th order') - - pl.legend(loc='best') - pl.axis('tight') - pl.title('Fitting a 4th and a 9th order polynomial') - - pl.figure() - pl.scatter(x, y, s=4) - pl.plot(x_test, f(x_test), label="truth") - pl.axis('tight') - pl.title('Ground truth (9th order polynomial)') - - diff --git a/scikit-learn/fig_code/svm_gui.py~ b/scikit-learn/fig_code/svm_gui.py~ deleted file mode 100644 index 3fcb480..0000000 --- a/scikit-learn/fig_code/svm_gui.py~ +++ /dev/null @@ -1,331 +0,0 @@ -""" -========== -Libsvm GUI -========== - -A simple graphical frontend for Libsvm mainly intended for didactic -purposes. You can create data points by point and click and visualize -the decision region induced by different kernels and parameter settings. - -To create positive examples click the left mouse button; to create -negative examples click the right button. - -If all examples are from the same class, it uses a one-class SVM. - -""" -from __future__ import division, print_function - -print(__doc__) - -# Author: Peter Prettenhoer -# -# License: BSD 3 clause - -import matplotlib -matplotlib.use('TkAgg') - -from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg -from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg -from matplotlib.figure import Figure -from matplotlib.contour import ContourSet - -import Tkinter as Tk -import sys -import numpy as np - -from sklearn import svm -from sklearn.datasets import dump_svmlight_file -from sklearn.externals.six.moves import xrange - -y_min, y_max = -50, 50 -x_min, x_max = -50, 50 - - -class Model(object): - """The Model which hold the data. It implements the - observable in the observer pattern and notifies the - registered observers on change event. - """ - - def __init__(self): - self.observers = [] - self.surface = None - self.data = [] - self.cls = None - self.surface_type = 0 - - def changed(self, event): - """Notify the observers. """ - for observer in self.observers: - observer.update(event, self) - - def add_observer(self, observer): - """Register an observer. """ - self.observers.append(observer) - - def set_surface(self, surface): - self.surface = surface - - def dump_svmlight_file(self, file): - data = np.array(self.data) - X = data[:, 0:2] - y = data[:, 2] - dump_svmlight_file(X, y, file) - - -class Controller(object): - def __init__(self, model): - self.model = model - self.kernel = Tk.IntVar() - self.surface_type = Tk.IntVar() - # Whether or not a model has been fitted - self.fitted = False - - def fit(self): - print("fit the model") - train = np.array(self.model.data) - X = train[:, 0:2] - y = train[:, 2] - - C = float(self.complexity.get()) - gamma = float(self.gamma.get()) - coef0 = float(self.coef0.get()) - degree = int(self.degree.get()) - kernel_map = {0: "linear", 1: "rbf", 2: "poly"} - if len(np.unique(y)) == 1: - clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], - gamma=gamma, coef0=coef0, degree=degree) - clf.fit(X) - else: - clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, - gamma=gamma, coef0=coef0, degree=degree) - clf.fit(X, y) - if hasattr(clf, 'score'): - print("Accuracy:", clf.score(X, y) * 100) - X1, X2, Z = self.decision_surface(clf) - self.model.clf = clf - self.model.set_surface((X1, X2, Z)) - self.model.surface_type = self.surface_type.get() - self.fitted = True - self.model.changed("surface") - - def decision_surface(self, cls): - delta = 1 - x = np.arange(x_min, x_max + delta, delta) - y = np.arange(y_min, y_max + delta, delta) - X1, X2 = np.meshgrid(x, y) - Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) - Z = Z.reshape(X1.shape) - return X1, X2, Z - - def clear_data(self): - self.model.data = [] - self.fitted = False - self.model.changed("clear") - - def add_example(self, x, y, label): - self.model.data.append((x, y, label)) - self.model.changed("example_added") - - # update decision surface if already fitted. - self.refit() - - def refit(self): - """Refit the model if already fitted. """ - if self.fitted: - self.fit() - - -class View(object): - """Test docstring. """ - def __init__(self, root, controller): - f = Figure() - ax = f.add_subplot(111) - ax.set_xticks([]) - ax.set_yticks([]) - ax.set_xlim((x_min, x_max)) - ax.set_ylim((y_min, y_max)) - canvas = FigureCanvasTkAgg(f, master=root) - canvas.show() - canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) - canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) - canvas.mpl_connect('button_press_event', self.onclick) - toolbar = NavigationToolbar2TkAgg(canvas, root) - toolbar.update() - self.controllbar = ControllBar(root, controller) - self.f = f - self.ax = ax - self.canvas = canvas - self.controller = controller - self.contours = [] - self.c_labels = None - self.plot_kernels() - - def plot_kernels(self): - self.ax.text(-50, -60, "Linear: $u^T v$") - self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") - self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") - - def onclick(self, event): - print(event.button) - if event.xdata and event.ydata: - if event.button == 1: - self.controller.add_example(event.xdata, event.ydata, 1) - elif event.button == 3: - self.controller.add_example(event.xdata, event.ydata, -1) - - def update_example(self, model, idx): - x, y, l = model.data[idx] - if l == 1: - color = 'w' - elif l == -1: - color = 'k' - self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) - - def update(self, event, model): - if event == "examples_loaded": - for i in xrange(len(model.data)): - self.update_example(model, i) - - if event == "example_added": - self.update_example(model, -1) - - if event == "clear": - self.ax.clear() - self.ax.set_xticks([]) - self.ax.set_yticks([]) - self.contours = [] - self.c_labels = None - self.plot_kernels() - - if event == "surface": - self.remove_surface() - self.plot_support_vectors(model.clf.support_vectors_) - self.plot_decision_surface(model.surface, model.surface_type) - - self.canvas.draw() - - def remove_surface(self): - """Remove old decision surface.""" - if len(self.contours) > 0: - for contour in self.contours: - if isinstance(contour, ContourSet): - for lineset in contour.collections: - lineset.remove() - else: - contour.remove() - self.contours = [] - - def plot_support_vectors(self, support_vectors): - """Plot the support vectors by placing circles over the - corresponding data points and adds the circle collection - to the contours list.""" - cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], - s=80, edgecolors="k", facecolors="none") - self.contours.append(cs) - - def plot_decision_surface(self, surface, type): - X1, X2, Z = surface - if type == 0: - levels = [-1.0, 0.0, 1.0] - linestyles = ['dashed', 'solid', 'dashed'] - colors = 'k' - self.contours.append(self.ax.contour(X1, X2, Z, levels, - colors=colors, - linestyles=linestyles)) - elif type == 1: - self.contours.append(self.ax.contourf(X1, X2, Z, 10, - cmap=matplotlib.cm.bone, - origin='lower', alpha=0.85)) - self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', - linestyles=['solid'])) - else: - raise ValueError("surface type unknown") - - -class ControllBar(object): - def __init__(self, root, controller): - fm = Tk.Frame(root) - kernel_group = Tk.Frame(fm) - Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, - value=0, command=controller.refit).pack(anchor=Tk.W) - Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, - value=1, command=controller.refit).pack(anchor=Tk.W) - Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, - value=2, command=controller.refit).pack(anchor=Tk.W) - kernel_group.pack(side=Tk.LEFT) - - valbox = Tk.Frame(fm) - controller.complexity = Tk.StringVar() - controller.complexity.set("1.0") - c = Tk.Frame(valbox) - Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) - Tk.Entry(c, width=6, textvariable=controller.complexity).pack( - side=Tk.LEFT) - c.pack() - - controller.gamma = Tk.StringVar() - controller.gamma.set("0.01") - g = Tk.Frame(valbox) - Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) - Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) - g.pack() - - controller.degree = Tk.StringVar() - controller.degree.set("3") - d = Tk.Frame(valbox) - Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) - Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) - d.pack() - - controller.coef0 = Tk.StringVar() - controller.coef0.set("0") - r = Tk.Frame(valbox) - Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) - Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) - r.pack() - valbox.pack(side=Tk.LEFT) - - cmap_group = Tk.Frame(fm) - Tk.Radiobutton(cmap_group, text="Hyperplanes", - variable=controller.surface_type, value=0, - command=controller.refit).pack(anchor=Tk.W) - Tk.Radiobutton(cmap_group, text="Surface", - variable=controller.surface_type, value=1, - command=controller.refit).pack(anchor=Tk.W) - - cmap_group.pack(side=Tk.LEFT) - - train_button = Tk.Button(fm, text='Fit', width=5, - command=controller.fit) - train_button.pack() - fm.pack(side=Tk.LEFT) - Tk.Button(fm, text='Clear', width=5, - command=controller.clear_data).pack(side=Tk.LEFT) - - -def get_parser(): - from optparse import OptionParser - op = OptionParser() - op.add_option("--output", - action="store", type="str", dest="output", - help="Path where to dump data.") - return op - - -def main(argv): - op = get_parser() - opts, args = op.parse_args(argv[1:]) - root = Tk.Tk() - model = Model() - controller = Controller(model) - root.wm_title("Scikit-learn Libsvm GUI") - view = View(root, controller) - model.add_observer(view) - Tk.mainloop() - - if opts.output: - model.dump_svmlight_file(opts.output) - -if __name__ == "__main__": - main(sys.argv)