mirror of
https://github.com/donnemartin/data-science-ipython-notebooks.git
synced 2024-03-22 13:30:56 +08:00
Added customer churn analysis notebook forked from aprial/growth-workshop.
This commit is contained in:
parent
cf55d05672
commit
08403f7c5f
1171
analyses/churn.ipynb
Normal file
1171
analyses/churn.ipynb
Normal file
File diff suppressed because one or more lines are too long
89
analyses/churn_measurements.py
Normal file
89
analyses/churn_measurements.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
from __future__ import division
|
||||
import numpy as np
|
||||
|
||||
__author__ = "Eric Chiang"
|
||||
__email__ = "eric[at]yhathq.com"
|
||||
|
||||
"""
|
||||
|
||||
Measurements inspired by Philip Tetlock's "Expert Political Judgment"
|
||||
|
||||
Equations take from Yaniv, Yates, & Smith (1991):
|
||||
"Measures of Descrimination Skill in Probabilistic Judgement"
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def calibration(prob,outcome,n_bins=10):
|
||||
"""Calibration measurement for a set of predictions.
|
||||
|
||||
When predicting events at a given probability, how far is frequency
|
||||
of positive outcomes from that probability?
|
||||
NOTE: Lower scores are better
|
||||
|
||||
prob: array_like, float
|
||||
Probability estimates for a set of events
|
||||
|
||||
outcome: array_like, bool
|
||||
If event predicted occurred
|
||||
|
||||
n_bins: int
|
||||
Number of judgement categories to prefrom calculation over.
|
||||
Prediction are binned based on probability, since "descrete"
|
||||
probabilities aren't required.
|
||||
|
||||
"""
|
||||
prob = np.array(prob)
|
||||
outcome = np.array(outcome)
|
||||
|
||||
c = 0.0
|
||||
# Construct bins
|
||||
judgement_bins = np.arange(n_bins + 1) / n_bins
|
||||
# Which bin is each prediction in?
|
||||
bin_num = np.digitize(prob,judgement_bins)
|
||||
for j_bin in np.unique(bin_num):
|
||||
# Is event in bin
|
||||
in_bin = bin_num == j_bin
|
||||
# Predicted probability taken as average of preds in bin
|
||||
predicted_prob = np.mean(prob[in_bin])
|
||||
# How often did events in this bin actually happen?
|
||||
true_bin_prob = np.mean(outcome[in_bin])
|
||||
# Squared distance between predicted and true times num of obs
|
||||
c += np.sum(in_bin) * ((predicted_prob - true_bin_prob) ** 2)
|
||||
return c / len(prob)
|
||||
|
||||
def discrimination(prob,outcome,n_bins=10):
|
||||
"""Discrimination measurement for a set of predictions.
|
||||
|
||||
For each judgement category, how far from the base probability
|
||||
is the true frequency of that bin?
|
||||
NOTE: High scores are better
|
||||
|
||||
prob: array_like, float
|
||||
Probability estimates for a set of events
|
||||
|
||||
outcome: array_like, bool
|
||||
If event predicted occurred
|
||||
|
||||
n_bins: int
|
||||
Number of judgement categories to prefrom calculation over.
|
||||
Prediction are binned based on probability, since "descrete"
|
||||
probabilities aren't required.
|
||||
|
||||
"""
|
||||
prob = np.array(prob)
|
||||
outcome = np.array(outcome)
|
||||
|
||||
d = 0.0
|
||||
# Base frequency of outcomes
|
||||
base_prob = np.mean(outcome)
|
||||
# Construct bins
|
||||
judgement_bins = np.arange(n_bins + 1) / n_bins
|
||||
# Which bin is each prediction in?
|
||||
bin_num = np.digitize(prob,judgement_bins)
|
||||
for j_bin in np.unique(bin_num):
|
||||
in_bin = bin_num == j_bin
|
||||
true_bin_prob = np.mean(outcome[in_bin])
|
||||
# Squared distance between true and base times num of obs
|
||||
d += np.sum(in_bin) * ((true_bin_prob - base_prob) ** 2)
|
||||
return d / len(prob)
|
3334
data/churn.csv
Normal file
3334
data/churn.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user