2015-12-27 09:25:19 -05:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Introduction to Theano \n " ,
" \n " ,
" Credits: Forked from [summerschool2015](https://github.com/mila-udem/summerschool2015) by mila-udem \n " ,
" \n " ,
2015-12-30 05:56:49 -05:00
" ## Slides \n " ,
" \n " ,
" Refer to the associated [Introduction to Theano slides](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.pdf) and use this notebook for hands-on practice of the concepts. \n " ,
2015-12-27 09:25:19 -05:00
" \n " ,
" ## Basic usage \n " ,
" \n " ,
" ### Defining an expression "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" import theano \n " ,
" from theano import tensor as T \n " ,
" x = T.vector( ' x ' ) \n " ,
" W = T.matrix( ' W ' ) \n " ,
" b = T.vector( ' b ' ) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 2 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" dot = T.dot(x, W) \n " ,
" out = T.nnet.sigmoid(dot + b) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Graph visualization "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 3 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" dot [@A] ' ' \n " ,
" |x [@B] \n " ,
" |W [@C] \n "
]
}
] ,
" source " : [
" from theano.printing import debugprint \n " ,
" debugprint(dot) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 4 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" sigmoid [@A] ' ' \n " ,
" |Elemwise { add,no_inplace} [@B] ' ' \n " ,
" |dot [@C] ' ' \n " ,
" | |x [@D] \n " ,
" | |W [@E] \n " ,
" |b [@F] \n "
]
}
] ,
" source " : [
" debugprint(out) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Compiling a Theano function "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 5 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" f = theano.function(inputs=[x, W], outputs=dot) \n " ,
" g = theano.function([x, W, b], out) \n " ,
" h = theano.function([x, W, b], [dot, out]) \n " ,
" i = theano.function([x, W, b], [dot + b, out]) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Graph visualization "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 6 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" CGemv {inplace} [@A] ' ' 3 \n " ,
" |AllocEmpty { dtype= ' float64 ' } [@B] ' ' 2 \n " ,
" | |Shape_i {1} [@C] ' ' 1 \n " ,
" | |W [@D] \n " ,
" |TensorConstant {1.0} [@E] \n " ,
" |InplaceDimShuffle { 1,0} [@F] ' W.T ' 0 \n " ,
" | |W [@D] \n " ,
" |x [@G] \n " ,
" |TensorConstant {0.0} [@H] \n "
]
}
] ,
" source " : [
" debugprint(f) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 7 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Elemwise {ScalarSigmoid} [(0, 0)] [@A] ' ' 2 \n " ,
" |CGemv {no_inplace} [@B] ' ' 1 \n " ,
" |b [@C] \n " ,
" |TensorConstant {1.0} [@D] \n " ,
" |InplaceDimShuffle { 1,0} [@E] ' W.T ' 0 \n " ,
" | |W [@F] \n " ,
" |x [@G] \n " ,
" |TensorConstant {1.0} [@D] \n "
]
}
] ,
" source " : [
" debugprint(g) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 8 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_f.png \n "
]
}
] ,
" source " : [
" from theano.printing import pydotprint \n " ,
" pydotprint(f, outfile= ' pydotprint_f.png ' ) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 9 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAABlgAAAH9CAIAAAD55ObJAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdd3RUZf4G8OdOJpMy6ZUkhECIhNC7SiiCkp9UQaQtLSJKkVVBVlB0dVFQEQERCxZgEVR0 \n FUWKgnSwAKFJCpAQ0itpk8kkU39/3J3ZkEYSMrkpz+fkcGbu3Hnv996Z5Bye833fK5hMJhARERER \n EREREbV0MqkLICIiIiIiIiIiagwMwoiIiIiIiIiIqFVgEEZERERERERERK2CXOoCiOrmk08+kboE \n Ivqfhx56KDg4WOoqiIiIiIiIakXgYvnUvAiCIHUJRPQ/u3btmjx5stRVEBERERER1Qo7wqgZ2gXw \n /91ETQFzaSIiIiIiala4RhgREREREREREbUKDMKIiIiIiIiIiKhVYBBGREREREREREStAoMwIiIi \n IiIiIiJqFRiEERERERERERFRq8AgjIiIiIiIiIiIWgUGYURERERERERE1CowCCMiIiIiIiIiolaB \n QRgREREREREREbUKDMKIiIiIiIiIiKhVYBBGREREREREREStAoMwIiIiIiIiIiJqFRiEERERERER \n ERFRqyCXugAiIuu4BZwAYoGXrDD4deB7wAYYD4RYYXwiIiIiIiKyAnaEETWWdYAjIABjgN+AdOBl \n QAAEYCZwwrzbKeBBQA68AOgqDXIUEAA3oA9wLyAA9sC9QC9ACQhARqOek/RVRQPrzY9NwBrgRWAw \n IAdmA48C2xv6iCrgSWA8MBhYWlUK9j4gNPRB715XYN6d9tEDrwCpjVEOERERERGRJNgRRtRYlgA6 \n YDnQDRgIAHgDSAJ2AA8DQ8y7DQJmAh2BNVUNUgJEAHsAOwCAALQH/gQAFADhgMbap9GUqvoF+BLY \n Yn66DlgLZAJFwHTgBWDfXR/iJtC+3NM84EFAD5wC3Kva/yyw7K4PWg83b6+zMl/A406DyIHlwBzg \n TSC4gQojIiIiIiJqStgRRtSI5gEOwA7AYN6yGEC5KEd0FHiqmhE0wFJz3lSBGzBfoiBMkqouA08D \n 7wM25i0fAR6ADHAD9pXLFustBZhV7qkJmAn8BXxdTQqWD/wIBN71ceuqQp1VOgK8WYuhlMAqYBxQ \n 2AB1ERERERERNTUMwogakRswAUgDfjFv6QW4A0eAePOWYuAa0LeaEUYBw6of/0ngngYrtg4avyoD \n MAt4HHApt/Fmgx4iGxgNZJfbchDYD0wAula1vwl4HfhHo8+LrFznXQoBOgNLG25AIiIiIiKiJoNB \n GLUsJmAvsAgIBJKBhwE7oAdw3rxDNDAOeBmYAwwAfgcAqIFvgEggHPgS8AA6AWeBU0A4YA90Ay6V \n O4oKWAnMBQYBg4BzAIBbQFw1P0nl3jsbAPCZ+elRQHn7lm+BSdWHKY41Tmi2BxRVlXfHy3IJGAb8 \n C3gJsAFUAIBs4O/AYuAFYBCwAMgCDMBJ4AUgGEgE+gLeQNGdqvqPebGw9YAeAPAN4AjsAM4ALwEd \n gThgiPlqH6jxUgPYDVwCxpqf7gXmAwYgE5gPzAeKK5VR5emIqvxWfAT8ZR5QJDbueQO9AAXQE9hb \n bvz3gSmAa/XXobK6fvHuWGeVn04a8A0w29widwUYAwjAZCAP+CfQEfj69sLGAJ8D1+pyLkRERERE \n RM2CiahZAYBdgKmaHyOQbZ629gaQDhwCBKCveYd2QIh5zzbmxwYgDQDgBhwB0gA5EAisAzTAVUAO \n DDWPYADGAmnmp5MAd6AAeKf6X7PwchXqAX9ADmQAJmCaOQvzBbSACXgAyKz+BCv8AAi9fUuV5eXf \n 6bIEA23Nj58EsoBsoD2w2ryxAAgD2gJJwFnAGQCwDjgKTAXy7lSVybxyVqz56Q1gPKAHfjGPtgSI \n Ar4H3AAbIKr6S20CHgVsAN2djmvZUt3pZFT/rag8YAAAYAugAi4CHQAZ8BtgAn4D3jXvFir+ba3F \n T52+eLWps6yaT6fo9nNRA2FAD0ALTAOuVipMTN9erdU3cNeuXVL/VSAiIiIiIqotdoRRyyIA3oA3 \n AGAF4Ac8BAQBF8w7PAM8CwAwAY5AAgBABvgBAHyBYYA/EAikAIsBe6AT0A44ax7hV+AnIMB8w8dv \n gXzgCLC0+rDgVLkKbYCZgB74N5AHXAWGAlOALGAPcB1wAnzv4gpUWd7RO12WPCAV+AAwms/6LeBm \n uaXKXIFXgVTgHaCf+XI9BTwAfFXNglkViMOuNT/dATwB2AAR5tHeBPoAE4DVgAHYWP2lBvAn4FuX \n u31UdzqrAFTzragsE2gLPA44AT2BtwEjsAm4BXwGPFfrYizq9MWrTZ2Kaj4dp9t3cwT+DUQDg4ER \n QKdK47QFYO44IyIiIiIiakEYhFFLVGFeoR1gND9+HpgBbAA2AWXmbprKb1Hc/tQWKDE//h3oUSnq \n mlCX8mYDAD4DdgBTAQGYCwD4FNgGTK/LUJXVUF4Nl2UDYAMsAgYA+YALcByAubdI9AAA4HS5oZR1 \n KcwXmAtsN3d4HQUeNr8kjma55uKEx4s1nksm4FiXo9d8OtV9Kyqwv/2LIY5wBVgAzACumWfClgEA \n 4qoP1Mqr/Rev9nVW/nQqz7TtDywDzgC9qhpBvFDpNRVORERERETUHDEIo1bmCNAJ6AU8U6lNppa0 \n QDxQevtGQ63XCAMQBvQH4oHXzbHXfUAX4CDwJTCuXlXdsbyazQbOAg8CUcAgYKM5OilfuQeAOsZP \n FfwDMAHrgbPAfdX3c7UBANjXeC5C9TFQlWo+nVp+K8KAnHLHdTfXuQcYDoSZf26ad/6/ulRYG3f/ \n 7bUwAvFAIDDLnNwRERERERG1AgzCqJWJBJTmXp46JSkWXYESYFO5LWnAJmBruSikwk/lJi+xKaw/ \n 4A8AEIAnABMwsC5JU5X1V1dezd4CegO/At8BAF4GHgQA/Fxun1QAwJh6VSVqB8wANgObgDnV75YP \n AIio8VwCzOte1VLNpxNZ/bfCWO7xI4AKiDM/zQUAhAOlt/esWdYIi0cDq2WdtbEGGA9sAa4Ar1Z6 \n VQ3AvCYaERERERFRC8IgjFoisWnIkhToAJiTgmIgHbgI7ATyAACxQEalt4g766sa8BGgHfAC8Bzw \n A7ABmAVE1nqNMNFUwNYch4lmArbAlLqcptgqVaGdp7ryar4s68xX41HAHwgBXgDuAdaaYykAHwP9 \n gGequj53rMriVaAMSAZCKr1kaVs7DHQEFtd4LuFAzu3TBrW3D2IpT9xS8+lU963wArLM69nDfNtN \n yzJnewBPYEk1Z2rxAhAEbK3m1dp/8WpfZ+VPR3/7lj+B88BU4EFgIfBOpa+oONR9dzo1IiIiIiKi \n 5oZBGLU4X5hnwL0PFAFbzVPVVgMaYC3gCEwGvIHFgAKYB9wC3gYApAEngeNACgBgFZAHbDEP+BGQ \n CyiBQ8AIYDMQCZwHvgRc61ikJzDr9lmQ3sDsukym+9W8OvtN4J/AH+bt1ZVX82XJAe4H3gT+AfQA \n /gN4AL8D44AxwDJgMSADjgImYB2QCAD4J3CldlVZtAdGA09UdUYfAkVABhAPnAbca7zUYoZ43vze \n OOB1AEAi8LF5Oqq4EH4SsAUQqjkdsf+uym+FDHgDMJW7H6gbcAIoAKYDy4DDwCnzuvI1SAeSq1lK \n P6cuX7za1Kmu6tNRA+vNl2IbsAMYD/iZp4t6A0ZgPLCzXGHnAQGYdqdTIyIiIiIiam4Ek6l+08OI \n pCEIAnYBk6Wug+rHANwPHLt9Bmhn4GodZ6qagAigN7CmYeuzjlRgNHBJ6jJq71HABdhWiz0F7Nq1 \n a/Jk/kISEREREVHzwI4wImpEnwFD727FfZEAbAX2m2cINmUa4EXgU6nLqL3LQLS5iYyIiIiIiKhl \n qe62bUREDecXYDGgB/KA2EqviquV6ev4B6kt8AXwHPAZoGiYMq3iGrAaCJS6jFrKBVYAB8z3xCQi \n IiIiImpZ2BFGRNbnDxQ
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 9 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" from IPython.display import Image \n " ,
" Image( ' pydotprint_f.png ' , width=1000) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 10 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_g.png \n "
]
} ,
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAABScAAAJ4CAIAAAAY0cErAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdaXgUZd7+/bOzmwAJkbAEghC2RBhWFZGAOCgiICBMQJFNBUHl9hYHQR3cQR1kwL/ggoPo \n jeijqDgyCKIMSAwwgkRQMEFlJwtJyN5Zu9PPi5ruabKRkHQ6hO/n6MOj6+rqq35V3UU866qqNtls \n NgEAAAAAABfwcHcBAAAAAAA0WqRuAAAAAABchdQNAAAAAICreLm7AAAAAKDB2bZt27Fjx9xdBYD/ \n CA8Pv/nmm91dxUUidQMAAABlvf3225988om7qwDwH9HR0aRuAAAAoHGJlta7uwYAkia4u4Da4bpu \n AAAAAABchdQNAAAAAICrkLoBAAAAAHAVUjcAAAAAAK5C6gYAAAAAwFVI3QAAAAAAuAqpGwAAAAAA \n VyF1AwAAAADgKqRuAAAAAABchdQNAAAAAICrkLoBAAAAAHAVUjcAAAAAAK5C6gYAAAAAwFW83F0A \n AAAAAFzKzkkxUrz0pAs6/03aIHlKY6XOLugfrsdYNwAAANC4LJP8JZM0StotJUkLJZNkkqZIMfbZ \n YqWhkpc0Xyop18kOySQFSX2l/pJJ8pP6S72lAMkkJdfrOrm/qsPScvtzm7REekIaJHlJ06Rx0tq6 \n XmKuNFMaKw2S5lUUuVdIprpeaO11l2ZdaB6L9JR0pj7KaQgY6wYAAAAal0elEulxqYd0gyRpkXRS \n WicNlwbbZ4uSpkidpCUVdZIvDZM2Sr6SJJPUQfpekpQlDZQKXL0aDamqrdKH0hr75DJpqZQi5Uh3 \n S/OlL2u9iBNSB6fJDGmoZJFipeYVzb9PWlDrhV6EE+fXWV4rKfhCnXhJj0v3Si9J4XVUWAPGWDcA \n AADQ6MySrpDWSVZ7y1xJTrnRsEO6v5IeCqR59nBbRpA0202p2y1V/SQ9JK2QPO0tb0rBkocUJH3p \n dCDjop2WpjpN2qQp0s/SR5VE7kzpCyms1sutqTJ1Vmi79FI1ugqQFkujpew6qKuBI3UDAAAAjU6Q \n dIeUKG21t/SWmkvbpd/tLXnSr1K/SnoYId1Uef8zpS51VmwN1H9VVmmqdI/UzKnxRJ0uIlUaKaU6 \n tXwtbZbukLpXNL9NekF6rN5PLy9fZy11liKkeXXXYUNF6gYAAABqziZtkuZIYdIpabjkK/WU4uwz \n HJZGSwule6XrpD2SJLO0XpouDZQ+lIKlrtI+KVYaKPlJPaSDTkvJlZ6XZkhRUpT0gyTpnJRQyeOk \n 03unSZJW2yd3SAHnt3wiRVee3PyrvBrVT/KpqLwLbpaD0k3Sc9KTkqeUK0lKlf5HmivNl6KkB6Sz \n klX6TpovhUvHpX5SiJRzoao+tV/gvVyySJLWS/7SOmmv9KTUSUqQBtu39pYqN7Wkz6WD0u32yU3S \n bMkqpUizpdlSXrkyKlwdQ4Xfijeln+0dGoxTEkKk3pKP1Eva5NT/CmmiFFj5diivpl+8C9ZZ4aeT \n KK2XptkH/w9JoySTNEHKkJ6WOkkfnV/YKOkd6dearMulyAYAAADgfNHR0YqWbJU/SqVU+9m/i6Qk \n 6RvJJPWzz9Be6myfs7X9uVVKlCQFSdulRMlLCpOWSQXSEclLutHeg1W6XUq0T0ZLzaUs6ZXK/+d+ \n oFOFFilU8pKSJZt0lz14t5KKJZs0REqpch2dH5K6nd9SYXmZF9os4VI7+/OZ0lkpVeogvWhvzJIi \n pXbSSWmf1FSStEzaId0pZVyoKpv9aud4++Qxaaxkkbbae3tU2i9tkIIkT2l/5ZvaJo2TPKWSCy3X \n 0VLZ6iRX/q0o32FbSdIaKVc6IHWUPKTdkk3aLf3NPls3I9FV41GjL1516iyq5NPJOX9dzFKk1FMq \n lu6SjpQrzIj6z1yo/mhFR0e7+1+Fi8dYNwAAAFBzJilECpEk/UVqI90sXSX9aJ/hYel/JUk2yV86 \n KknykNpIklpJN0mhUph0Wpor+UldpfbSPnsP26R/Sm3ttx//RMqUtkvzKg8nsU4VekpTJIv0f1KG \n dES6UZoonZU2Sr9JTaRWtdgCFZa340KbJUM6I70uldrX+mXphNPl5YHSM9IZ6RXpGvvmul8aIv1/ \n lVzkXIbR7VL75DrpPslTGmbv7SWpr3SH9KJklV6rfFNL+l5qVZObUFe2OoslVfKtKC9FaifdIzWR \n ekl/lUqlldI5abX0SLWLcajRF686dfpU8uk0OX82f+n/pMPSIOkWqWu5ftpJso+lN16kbgAAAOBi \n lTk921cqtT//szRZelVaKRXZxwnLv8Xn/ElvKd/+fI/Us1yuvqMm5U2TJK2W1kl3SiZphiTp79J7 \n 0t016aq8KsqrYrO8KnlKc6TrpEypmbRTkn3U1DBEkrTLqauAmhTWSpohrbWPXe+QhttfMnpzbHPj \n vPEDVa5LiuRfk6VXvTqVfSvK8Dv/i2H0cEh6QJos/Wq/oKBIkpRQeXp3Vv0vXvXrLP/plL9g4Vpp \n gbRX6l1RD8aGSqqq8EaA1A0AAAC4wHapq9RberjcAGA1FUu/S4XnN1qrfV23pEjpWul36QV7xr5e \n ulr6WvpQGn1RVV2wvKpNk/ZJQ6X9UpT0mj2nOVdu/O5UjbJuGY9JNmm5tE+6vvKR6taSJL8q18VU \n eeasUNWrU81vRaSU5rTc5vY6N0p/lCLtjxP2mW+tSYXVUftvr0Op9LsUJk21Hya4/JC6AQAAABeY \n LgXYRylrFNscukv50kqnlkRppfSuU+4q8yg/fG0Md18rhUqSTNJ9kk26oSaxtsL6Kyuvai9LfaRt \n 0meSpIXSUEnSV07znJEkjbqoqgztpcnSKmmldG/ls2VKkoZVuS5t7dcqV1PVqzO98m9FqdPzMVKu \n lGCfTJckDZQKzx+Nd1zX/bvqWDXrrI4l0lhpjXRIeqbcq2ZJ9uvYGy9SNwAAAHCxjOFQRywpkWSP \n JXlSknRA+kDKkCTFS8nl3mLMbKmowzFSe2m+9Ij0D+lVaao0vdrXdRvulLzt2dswRfKWJtZkNY1B \n 4DIDlZWVV/VmWWbfGuOkUKmzNF/qIi21Z2BJb0nXSA9XtH0uWJXDM1KRdErqXO4lx4D8v6RO0twq \n 12WglHb+2dfF53fiKM9oqXp1KvtWtJDO2m94JvtN4B2Xpm+UrpQerWRNHeZLV0nvVvJq9b941a+z \n /KdjOb/leylOulMaKj0ovVLuK2p0df2FVu0SR+oGAAAALsr79hOJV0g50rv2M35flAqkpZK/NEEK \n keZKPtIs6Zz0V0lSovSdtFM6LUlaLGVIa+wdvimlSwHSN9It0ippuhQnfVjD34uSdKU09fyTyUOk \n aTU5J3mb/fZdJ6SnpX/b2ysrr+rNkiYNkF6SHpN6Sp9KwdIeabQ0SlogzZU8pB2STVomHZckPS0d \n ql5VDh2kkdJ9Fa3RG1KOlCz9Lu2Smle5qY0DFo5fPkuQXpAkHZfesp/Vb9wp7aS0RjJVsjrGmQUV \n fis8pEWSzenu9EFSjJQl3S0tkP4lxdpvPFaFJOlUJfdaS6vJF686dZor+nTM0nL7pnhPWieNldrY \n z7oPkUqlsdIHToXFSSbprgut2iXOZLNd3PkuAAAAQKM1YcKET/SJ1ru7Dlw0qzRA+vb8E+kj7D9e \n VX02aZjUR1pSt/W5xhlp5Pm/vN3AjZOaSe9daLYJilb0+vWX6g7JWDcAAACARme1dGPtbslmMEnv \n SpvtJ1o3ZAXSE9Lf3V1G9f0kHbYPjzdq1f/hOQAAAABo2LZKcyWLlCHFl3vVuMLcUsMY1E56X3pE \n Wl3uB7calF+lF6Uwd5dRTenSX6Qt1fsN9kscY90AAAAAGotQKUsqkj6TQpzazdIi6ZgkaYG0v4bd \n 9pGekl6rszJdotelE7lLpNXS+1K4uyupF4x1AwAAAGgs/iAlVdQeIC2UFtai5y7SvFq8Hc68pcfd \n XUM9YqwbAAAAAABXIXU
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 10 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" pydotprint(g, outfile= ' pydotprint_g.png ' ) \n " ,
" Image( ' pydotprint_g.png ' , width=1000) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 11 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_h.png \n "
]
} ,
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAABlgAAALdCAIAAADPoPliAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdd3RUZf4G8OdOJpMy6ZUkhECIhNC7SiiCkp9UQaQtLSJKkVVBVlB0dVFQEQERCxZgEVR0 \n FUWKgnSwAKFJCpAQ0itpk8kkU39/3J3ZkEYSMrkpz+fkcGbu3Hnv996Z5Bye833fK5hMJhARERER \n EREREbV0MqkLICIiIiIiIiIiagwMwoiIiIiIiIiIqFVgEEZERERERERERK2CXOoCiOrmk08+kboE \n Ivqfhx56KDg4WOoqiIiIiIiIakXgYvnUvAiCIHUJRPQ/u3btmjx5stRVEBERERER1Qo7wqgZ2gXw \n /91ETQFzaSIiIiIiala4RhgREREREREREbUKDMKIiIiIiIiIiKhVYBBGREREREREREStAoMwIiIi \n IiIiIiJqFRiEERERERERERFRq8AgjIiIiIiIiIiIWgUGYURERERERERE1CowCCMiIiIiIiIiolaB \n QRgREREREREREbUKDMKIiIiIiIiIiKhVYBBGREREREREREStAoMwIiIiIiIiIiJqFRiEERERERER \n ERFRqyCXugAiIuu4BZwAYoGXrDD4deB7wAYYD4RYYXwiIiIiIiKyAnaEETWWdYAjIABjgN+AdOBl \n QAAEYCZwwrzbKeBBQA68AOgqDXIUEAA3oA9wLyAA9sC9QC9ACQhARqOek/RVRQPrzY9NwBrgRWAw \n IAdmA48C2xv6iCrgSWA8MBhYWlUK9j4gNPRB715XYN6d9tEDrwCpjVEOERERERGRJNgRRtRYlgA6 \n YDnQDRgIAHgDSAJ2AA8DQ8y7DQJmAh2BNVUNUgJEAHsAOwCAALQH/gQAFADhgMbap9GUqvoF+BLY \n Yn66DlgLZAJFwHTgBWDfXR/iJtC+3NM84EFAD5wC3Kva/yyw7K4PWg83b6+zMl/A406DyIHlwBzg \n TSC4gQojIiIiIiJqStgRRtSI5gEOwA7AYN6yGEC5KEd0FHiqmhE0wFJz3lSBGzBfoiBMkqouA08D \n 7wM25i0fAR6ADHAD9pXLFustBZhV7qkJmAn8BXxdTQqWD/wIBN71ceuqQp1VOgK8WYuhlMAqYBxQ \n 2AB1ERERERERNTUMwogakRswAUgDfjFv6QW4A0eAePOWYuAa0LeaEUYBw6of/0ngngYrtg4avyoD \n MAt4HHApt/Fmgx4iGxgNZJfbchDYD0wAula1vwl4HfhHo8+LrFznXQoBOgNLG25AIiIiIiKiJoNB \n GLUsJmAvsAgIBJKBhwE7oAdw3rxDNDAOeBmYAwwAfgcAqIFvgEggHPgS8AA6AWeBU0A4YA90Ay6V \n O4oKWAnMBQYBg4BzAIBbQFw1P0nl3jsbAPCZ+elRQHn7lm+BSdWHKY41Tmi2BxRVlXfHy3IJGAb8 \n C3gJsAFUAIBs4O/AYuAFYBCwAMgCDMBJ4AUgGEgE+gLeQNGdqvqPebGw9YAeAPAN4AjsAM4ALwEd \n gThgiPlqH6jxUgPYDVwCxpqf7gXmAwYgE5gPzAeKK5VR5emIqvxWfAT8ZR5QJDbueQO9AAXQE9hb \n bvz3gSmAa/XXobK6fvHuWGeVn04a8A0w29widwUYAwjAZCAP+CfQEfj69sLGAJ8D1+pyLkRERERE \n RM2CiahZAYBdgKmaHyOQbZ629gaQDhwCBKCveYd2QIh5zzbmxwYgDQDgBhwB0gA5EAisAzTAVUAO \n DDWPYADGAmnmp5MAd6AAeKf6X7PwchXqAX9ADmQAJmCaOQvzBbSACXgAyKz+BCv8AAi9fUuV5eXf \n 6bIEA23Nj58EsoBsoD2w2ryxAAgD2gJJwFnAGQCwDjgKTAXy7lSVybxyVqz56Q1gPKAHfjGPtgSI \n Ar4H3AAbIKr6S20CHgVsAN2djmvZUt3pZFT/rag8YAAAYAugAi4CHQAZ8BtgAn4D3jXvFir+ba3F \n T52+eLWps6yaT6fo9nNRA2FAD0ALTAOuVipMTN9erdU3cNeuXVL/VSAiIiIiIqotdoRRyyIA3oA3 \n AGAF4Ac8BAQBF8w7PAM8CwAwAY5AAgBABvgBAHyBYYA/EAikAIsBe6AT0A44ax7hV+AnIMB8w8dv \n gXzgCLC0+rDgVLkKbYCZgB74N5AHXAWGAlOALGAPcB1wAnzv4gpUWd7RO12WPCAV+AAwms/6LeBm \n uaXKXIFXgVTgHaCf+XI9BTwAfFXNglkViMOuNT/dATwB2AAR5tHeBPoAE4DVgAHYWP2lBvAn4FuX \n u31UdzqrAFTzragsE2gLPA44AT2BtwEjsAm4BXwGPFfrYizq9MWrTZ2Kaj4dp9t3cwT+DUQDg4ER \n QKdK47QFYO44IyIiIiIiakEYhFFLVGFeoR1gND9+HpgBbAA2AWXmbprKb1Hc/tQWKDE//h3oUSnq \n mlCX8mYDAD4DdgBTAQGYCwD4FNgGTK/LUJXVUF4Nl2UDYAMsAgYA+YALcByAubdI9AAA4HS5oZR1 \n KcwXmAtsN3d4HQUeNr8kjma55uKEx4s1nksm4FiXo9d8OtV9Kyqwv/2LIY5wBVgAzACumWfClgEA \n 4qoP1Mqr/Rev9nVW/nQqz7TtDywDzgC9qhpBvFDpNRVORERERETUHDEIo1bmCNAJ6AU8U6lNppa0 \n QDxQevtGQ63XCAMQBvQH4oHXzbHXfUAX4CDwJTCuXlXdsbyazQbOAg8CUcAgYKM5OilfuQeAOsZP \n FfwDMAHrgbPAfdX3c7UBANjXeC5C9TFQlWo+nVp+K8KAnHLHdTfXuQcYDoSZf26ad/6/ulRYG3f/ \n 7bUwAvFAIDDLnNwRERERERG1AgzCqJWJBJTmXp46JSkWXYESYFO5LWnAJmBruSikwk/lJi+xKaw/ \n 4A8AEIAnABMwsC5JU5X1V1dezd4CegO/At8BAF4GHgQA/Fxun1QAwJh6VSVqB8wANgObgDnV75YP \n AIio8VwCzOte1VLNpxNZ/bfCWO7xI4AKiDM/zQUAhAOlt/esWdYIi0cDq2WdtbEGGA9sAa4Ar1Z6 \n VQ3AvCYaERERERFRC8IgjFoisWnIkhToAJiTgmIgHbgI7ATyAACxQEalt4g766sa8BGgHfAC8Bzw \n A7ABmAVE1nqNMNFUwNYch4lmArbAlLqcptgqVaGdp7ryar4s68xX41HAHwgBXgDuAdaaYykAHwP9 \n gGequj53rMriVaAMSAZCKr1kaVs7DHQEFtd4LuFAzu3TBrW3D2IpT9xS8+lU963wArLM69nDfNtN \n yzJnewBPYEk1Z2rxAhAEbK3m1dp/8WpfZ+VPR3/7lj+B88BU4EFgIfBOpa+oONR9dzo1IiIiIiKi \n 5oZBGLU4X5hnwL0PFAFbzVPVVgMaYC3gCEwGvIHFgAKYB9wC3gYApAEngeNACgBgFZAHbDEP+BGQ \n CyiBQ8AIYDMQCZwHvgRc61ikJzDr9lmQ3sDsukym+9W8OvtN4J/AH+bt1ZVX82XJAe4H3gT+AfQA \n /gN4AL8D44AxwDJgMSADjgImYB2QCAD4J3CldlVZtAdGA09UdUYfAkVABhAPnAbca7zUYoZ43vze \n OOB1AEAi8LF5Oqq4EH4SsAUQqjkdsf+uym+FDHgDMJW7H6gbcAIoAKYDy4DDwCnzuvI1SAeSq1lK \n P6cuX7za1Kmu6tNRA+vNl2IbsAMYD/iZp4t6A0ZgPLCzXGHnAQGYdqdTIyIiIiIiam4Ek6l+08OI \n pCEIAnYBk6Wug+rHANwPHLt9Bmhn4GodZ6qagAigN7CmYeuzjlRgNHBJ6jJq71HABdhWiz0F7Nq1 \n a/Jk/kISEREREVHzwI4wImpEnwFD727FfZEAbAX2m2cINmUa4EXgU6nLqL3LQLS5iYyIiIiIiKhl \n qe62bUREDecXYDGgB/KA2EqviquV6ev4B6kt8AXwHPAZoGiYMq3iGrAaCJS6jFrKBVYAB8z3xCQi \n IiIiImpZ2BFGRNbnDxQ
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 11 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" pydotprint(h, outfile= ' pydotprint_h.png ' ) \n " ,
" Image( ' pydotprint_h.png ' , width=1000) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Executing a Theano function "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 12 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" array([ 1.79048354, 0.03158954, -0.26423186]) "
]
} ,
" execution_count " : 12 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" import numpy as np \n " ,
" np.random.seed(42) \n " ,
" W_val = np.random.randn(4, 3) \n " ,
" x_val = np.random.rand(4) \n " ,
" b_val = np.ones(3) \n " ,
" \n " ,
" f(x_val, W_val) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 13 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" array([ 0.9421594 , 0.73722395, 0.67606977]) "
]
} ,
" execution_count " : 13 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" g(x_val, W_val, b_val) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 14 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" [array([ 1.79048354, 0.03158954, -0.26423186]), \n " ,
" array([ 0.9421594 , 0.73722395, 0.67606977])] "
]
} ,
" execution_count " : 14 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" h(x_val, W_val, b_val) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 15 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" [array([ 2.79048354, 1.03158954, 0.73576814]), \n " ,
" array([ 0.9421594 , 0.73722395, 0.67606977])] "
]
} ,
" execution_count " : 15 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" i(x_val, W_val, b_val) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Graph definition and Syntax \n " ,
" ## Graph structure "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 16 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_f_notcompact.png \n "
]
} ,
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAABXwAAALwCAIAAACrxiohAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdd3hTZd8H8G9GkzbdpS0dQG1B2soqCCh7KMhQWQIiMkQEVEBBHkT0caCPAxy8ggguQEQF \n BZRVlF2mlFEeWihQoKWD0t2kSZs0yXn/OG/yhi4KNE3H93NxeSUnJ/f5ndPTXp7vue/7SARBABER \n ERERERFRTZM6ugAiIiIiIiIiapgYOhARERERERGRXTB0ICIiIiIiIiK7kDu6AKp5V69e3bNnj6Or \n IKL/N23aNEeXQERERETkABJOJNnwbNy4cezYsY6ugoj+H//SEhEREVHjxJ4ODRevcYjqgo0AM0Ai \n IiIiaqw4pwMRERERERER2QVDByIiIiIiIiKyC4YORERERERERGQXDB2IiIiIiIiIyC4YOhARERER \n ERGRXTB0ICIiIiIiIiK7YOhARERERERERHbB0IGIiIiIiIiI7IKhAxERERERERHZBUMHIiIiIiIi \n IrILhg5EREREREREZBcMHYiIiIiIiIjILhg6EBEREREREZFdyB1dABE5VC4QA1wAFtqh8cvAZkAG \n DAda2aF9IiIiIiKq29jTgeqYzwEVIAEeB44CGcBbgASQABOAGMtqh4FHADkwHygt18h+QAJ4AZ2A \n hwAJ4Aw8BEQBroAEuFGr++T4qhKALyyvBWAx8AbQC5ADk4CRwI81vUUN8AIwHOgFzKsocVgGSGp6 \n o/euDTD9dusYgX8DabVRDhERERFRfceeDlTHzAVKgQVAW6A7AOADIAX4CRgE9Las1hOYALQEFlfU \n iA4YCGwFlAAACXAf8A8AoADoARTbezfqUlV/AT8DP1jefg58CmQCamA8MB/Ycc+bSAbus3mbBzwC \n GIHDgHdF68cCr9/zRu9C8q11ltcU8LldI3JgATAF+AgIq6HCiIiIiIgaKPZ0oLpnOuAC/ASYLEvm \n ALC5bBbtB6ZV0kIxMM9ybV+GFzDDQaGDQ6r6L/AysAyQWZZ8DfgAUsAL2GGT49y1VGCizVsBmACc \n A36tJHHIB/4Emt/zdu9UmTortA/4qBpNuQL/AZ4ECmugLiIiIiKiBoyhA9U9XsAIIB34y7IkCvAG \n 9gFJliVFwCXgwUpaGAL0q7z9F4D7a6zYO1D7VZmAicBzgIfNwuQa3UQWMBTIslnyN7ATGAG0qWh9 \n AXgf+Fetj60oX+c9agVEAPNqrkEiIiIiooaIoUOjJADbgZlAc+A6MAhQAu2B05YVEoAngbeAKUBX \n 4BgAQAtsBCYDPYCfAR+gNRALHAZ6AM5AW+CszVY0wCJgKtAT6AmcBADkAomV/Eux+e4kAMB3lrf7 \n Addbl/wGjK78wlVV5cghZ0BRUXm3PSxngX7Ae8BCQAZoAABZwCxgDjAf6Am8CNwETMAhYD4QBlwD \n HgT8APXtqvrdMrnDF4ARALARUAE/ASeAhUBLIBHobTna0VUeagBbgLPAE5a324EZgAnIBGYAM4Ci \n cmVUuDuiCs+Kr4FzlgZFYocUPyAKUAAdgO027S8DxgKelR+H8u70xLttnRX+dNKBjcAkS9ePeOBx \n QAKMAfKAt4GWwK+3FvY48D1w6U72hYiIiIiosRGowdmwYQMACJX/MwNZlq7vHwAZwG5AAjxoWaEF \n 0MqyZoDltQlIBwB4AfuAdEAONAc+B4qBi4Ac6GNpwQQ8AaRb3o4GvIECYEnl52IPmwqNQBAgB24A \n AjDOkjs0BQyAAPQFMqvcR9t/AMJvXVJhefm3OyxhQDPL6xeAm0AWcB/woWVhARAJNANSgFjAHQDw \n ObAfeBrIu11VgmWmgwuWt1eB4YAR+MvS2lzgFLAZ8AJkwKnKD7UAjARkQOnttmtdUtnu3Kj8rCjf \n YDAA4AdAA8QBoYAUOAoIwFHgM8tq4bjNWWr7w6r+iVedOvWV/HTUt+6LFogE2gMGYBxwsVxhYtLx \n zu3q38C/tERERETUeLGnQ6MkAfwAPwDAm0Ag8CgQApyxrDAbeAUAIAAq4AoAQAoEAgCaAv2AIKA5 \n kArMAZyB1kALINbSwh5gGxBsefDEb0A+sA+YV/m12WGbCmXABMAIrAXygItAH2AscBPYClwG3ICm \n 93AEKixv/+0OSx6QBnwFmC17/TGQbDO1hCfwDpAGLAE6Ww7XNKAv8EslExyUITb7qeXtT8DzgAwY \n aGntI6ATMAL4EDABX1Z+qAH8AzS9k+liK9ud/wCo5KwoLxNoBjwHuAEdgE8AM7AcyAW+A16tdjFW \n d3TiVadORSU/HbdbV1MBa4EEoBcwAGhdrp1mACw9KYiIiIiIqCIMHRqxMmMTlIDZ8vo14FlgKbAc \n 0FvuEpf/iuLWt06AzvL6GNC+XKww4k7KmwQA+A74CXgakABTAQDfAmuA8XfSVHlVlFfFYVkKyICZ \n QFcgH/AADgKw3DMX9QUAHLFpyvVOCmsKTAV+tPRc2A8MsnwktmY95uKgibgq9yUTUN3J1qvencrO \n ijKcbz0xxBbigReBZ4FLltE0egBAYuXhha3qn3jVr7P8T6f8aJ0uwOvACSCqohbEA5VRVeFERERE \n RI0cQweqyD6gNRAFzC53+7eaDEASUHLrQlO153QAEAl0AZKA9y0Rw8PAA8DfwM/Ak3dV1W3Lq9ok \n IBZ4BDgF9AS+tFym2lYuPnDxji71y/gXIABfALHAw5X3UwgAADhXuS+Syi+5K1T17lTzrIgEsm22 \n 622pcyvQH4i0/Eu2rPzYnVRYHfd+9lqZgSSgOTDRkpIQEREREdGdYOhAFZkMuFruUd/RVatVG0AH \n LLdZkg4sB1bbXHaW+Ve+84LY2aELEAQAkADPAwLQ/U6u6iusv7LyqvYx0BHYA2wCALwFPAIA2GWz \n ThoA4PG7qkrUAngWWAUsB6ZUvlo+AGBglfsSbJmnoJqq3p3JlZ8VZpvXwwANkGh5mwMA6AGU3NoX \n wzqnQxJqWDXrrI7FwHDgByAeeKfcp1oAljksiIiIiIioIgwdGjHxZrj1qqwUgOWqrAjIAOKA9UAe \n AOACcKPcV8SVjRU1OAxoAcwHXgX+AJYCE4HJ1Z7TQfQ04GSJHkQTACdg7J3sptgFoMxt6srKq/qw \n fG45GiOBIKAVMB+4H/jUEgEAWAl0BmZXdHxuW5XVO4AeuA60KveRtTvGXqAlMKfKfekBZN869MBw \n ayPW8sQlVe9OZWeFL3DTMtcjLI//sE5LsRVoAsytZE+t5gMhwOpKPq3+iVf9Osv/dIy3LvkHOA08 \n DTwCvAQsKXeKik09fLtdIyIiIiJqxBg6NFbrLL3olwFqYLWlu/uHQDHwKaACxgB+wBxAAUwHcoFP \n AADpwCHgIJAKAPgPkAf8YGnwayAHcAV2AwOAVcBk4DTw8x0+KBFAE2DirSMp/IBJd9Ihf49l5sJk \n 4G3guGV5ZeVVfViygW7AR8C/gPbA74APcAx4EngceB2YA0iB/YAAfA5cAwC8DcRXryqr+4ChwPMV \n 7dEKQA3cAJKAI4B3lYdazGusj/xMBN4HAFwDVlqGtIiTRKYAPwCSSnZH7FdS4VkhBT4ABJvnkngB \n MUABMB54HdgLHLbMuViFDOB6JdNMZt/JiVedOrUV/XS0wBeWQ7EG+AkYDgRahpz4AWZgOLDeprDT \n gAQYd7tdIyIiIiJqxCSCcHe956nu2rhx49ixY+9yWATVBSagG3Dg1lEkEZanNlafAAwEOgKLa7Y+ \n +0gDhlqeQ1kvjAQ8gDW3W20jMBb8S0tEREREjRN7OhDVPd8Bfe5tNkqRBFgN7LSMMqjLioE3gG8d \n XUb1/RdIsHSOICIiIiKiSlQ2Mz4R1bq/gDmAEcgDLpT7VJxdwniHv7XNgHXAq8B35Z40WadcAj4E \n mju6jGrKAd4Eoi3P5iAiIiIiokqwpwNRnREEFAB6YBPgZ7NcC3wAXAUAvA6cusNmOwL/Br6ssTLt \n okP9SRxKge+AdUCYoys
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 16 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" pydotprint(f, compact=False, outfile= ' pydotprint_f_notcompact.png ' ) \n " ,
" Image( ' pydotprint_f_notcompact.png ' , width=1000) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Strong typing \n " ,
" ### Broadcasting tensors "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 17 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" (True, False) \n "
]
}
] ,
" source " : [
" r = T.row( ' r ' ) \n " ,
" print(r.broadcastable) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 18 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" (False, True) \n "
]
}
] ,
" source " : [
" c = T.col( ' c ' ) \n " ,
" print(c.broadcastable) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 19 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" [[ 1.1 2.1 3.1] \n " ,
" [ 1.2 2.2 3.2]] \n "
]
}
] ,
" source " : [
" f = theano.function([r, c], r + c) \n " ,
" print(f([[1, 2, 3]], [[.1], [.2]])) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Graph Transformations \n " ,
" ## Substitution and Cloning \n " ,
" ### The `givens` keyword "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 20 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" array([ 1.90651511, 0.60431744, -0.64253361]) "
]
} ,
" execution_count " : 20 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" x_ = T.vector( ' x_ ' ) \n " ,
" x_n = (x_ - x_.mean()) / x_.std() \n " ,
" f_n = theano.function([x_, W], dot, givens= { x: x_n}) \n " ,
" f_n(x_val, W_val) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Cloning with replacement "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 21 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" array([ 1.90651511, 0.60431744, -0.64253361]) "
]
} ,
" execution_count " : 21 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" dot_n, out_n = theano.clone([dot, out], replace= { x: (x - x.mean()) / x.std()}) \n " ,
" f_n = theano.function([x, W], dot_n) \n " ,
" f_n(x_val, W_val) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Gradient \n " ,
" ### Using `theano.grad` "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 22 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" y = T.vector( ' y ' ) \n " ,
" C = ((out - y) ** 2).sum() \n " ,
" dC_dW = theano.grad(C, W) \n " ,
" dC_db = theano.grad(C, b) \n " ,
" # dC_dW, dC_db = theano.grad(C, [W, b]) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Using the gradients "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 23 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" [array(0.6137821438190066), array([[ 0.01095277, 0.07045955, 0.051161 ], \n " ,
" [ 0.01889131, 0.12152849, 0.0882424 ], \n " ,
" [ 0.01555008, 0.10003427, 0.07263534], \n " ,
" [ 0.01048429, 0.06744584, 0.04897273]]), array([ 0.03600015, 0.23159028, 0.16815877])] \n "
]
}
] ,
" source " : [
" cost_and_grads = theano.function([x, W, b, y], [C, dC_dW, dC_db]) \n " ,
" y_val = np.random.uniform(size=3) \n " ,
" print(cost_and_grads(x_val, W_val, b_val, y_val)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 24 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" [array(0.6137821438190066), array([[ 0.49561888, -0.14531026, 0.64257244], \n " ,
" [ 1.52114073, -0.24630622, -0.2429612 ], \n " ,
" [ 1.57765781, 0.7574313 , -0.47673792], \n " ,
" [ 0.54151161, -0.47016228, -0.47062703]]), array([ 0.99639999, 0.97684097, 0.98318412])] \n "
]
}
] ,
" source " : [
" upd_W = W - 0.1 * dC_dW \n " ,
" upd_b = b - 0.1 * dC_db \n " ,
" cost_and_upd = theano.function([x, W, b, y], [C, upd_W, upd_b]) \n " ,
" print(cost_and_upd(x_val, W_val, b_val, y_val)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 25 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_cost_and_upd.png \n "
]
} ,
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAACVMAAAPwCAIAAAC5/esPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdeVxVdeL/8fdlVVDBBcUNFUwwzH1JuWqW46SZS6a2QTqZWt++NVajLbaM7U3LTIvtZpBN \n Llmj/rTSXCFLQ7OUpRQQlUUMZd8u3N8fZ+CLIgoKHJbX8+FjHveee/ic9zkczAfv+XyOxW63CwAA \n AAAAAAAAAEAD52B2AAAAAAAAAAAAAAA1gOYPAAAAAAAAAAAAaAxo/gAAAAAAAAAAAIDGwMnsAAAA \n AAAAAABQp7Zs2RIXF2d2CgD/5evrO3bsWLNTAI0EzR8AAAAAAACApuX9999fvXq12SkA/Nf06dNp \n /oCaQvMHAAAAAAAAoOmZLq0yOwMASTPMDgA0LjznDwAAAAAAAAAAAGgMaP4AAAAAAAAAAACAxoDm \n DwAAAAAAAAAAAGgMaP4AAAAAAAAAAACAxoDmDwAAAAAAAAAAAGgMaP4AAAAAAAAAAACAxoDmDwAA \n AAAAAAAAAGgMaP4AAAAAAAAAAACAxoDmDwAAAAAAAAAAAGgMaP4AAAAAAAAAAACAxoDmDwAAAAAA \n AAAAAGgMaP4AAAAAAAAAAACAxoDmDwAAAAAAAAAAAGgMnMwOAAAAAAAAAABAffWHtFOKlh6rhcF/ \n l9ZKjtIUqWctjA+g6WHOHwAAAAAAAAA0HK9JbpJFmih9LyVJiyWLZJGCpZ2lu4VL10lO0kKpqMIg \n 2ySL5CkNlIZJFqmZNEzqL7lLFim5Ts/J/FSHpNdLX9ull6VHpZGSk3SndJMUWtNHzJLulqZII6WH \n z1f7vSlZavqgly9QmnexfWzSE9LxuogDoCLm/AEAAAAAAABAw/GgVCQ9IvWRRkiSnpWOSp9K10uj \n SnezSsGSn/Ty+QbJlcZJ6yRXSZJF6i79KEk6IwVJebV9GvUp1TfSZ9Ky0revSa9IKVKmdLu0UPp/ \n l32IBKl7ubfp0nWSTQqXWp9v/73Soss+6CVIODtnRR2kNhcbxEl6RPqL9ILkW0PBAFQZc/4AAAAA \n AAAAoEGZJzWXPpWKS7cskFSuuzJsk+ZWMkKe9HBpwXYOT2m+Sc2fKal+kf5HelNyLN3yjtRGcpA8 \n pf9Xrky9ZMekkHJv7VKw9Kv0eSW132npP1LXyz5udZ2T87y2Si9UYSh36TlpkpRRA7kAVAvNHwAA \n AAAAAAA0KJ7SVOmE9E3plv5Sa2mrdLh0S7b0mzSokhEmSGMqH/9u6YoaC1sNdZ+qWAqRZkutym1M \n qNFDnJRukE6W2/KttFGaKgWeb3+79Iz0tzpf6rNizsvUUwqQHq65AQFUDc0fAAAAAAAAAJzNLm2Q \n 7pO6SonS9ZKr1FfaV7rDIWmStFj6izRU2i1JypFWSbOkIOkzqY3US9orhUtBUjOpj3Sg3FGypCXS \n HMkqWaWfJEl/SDGV/Dla7mvvlCR9WPp2m+R+9pbV0vTK2yO3Cz4Jqpnkcr54F70sB6Qx0t+lxyRH \n KUuSdFL6X2mBtFCySvdIqVKxtEtaKPlK8dIgyUvKvFiqNaUP/HtdskmSVklu0qfSHukxyU+KkUaV \n Xu1NF7zUkr6UDkg3lr7dIM2XiqUUab40X8quEOO8p2M4713xjvRr6YAGY2qml9RfcpH6SRvKjf+m \n NFPyqPw6VFTdG++iOc/73TkhrZLuLJ0EeVCaKFmkGVK69KTkJ31+drCJ0kfSb9U5FwCXzWK3283O \n AAAAAAAAAAB1Z8aMGau1Wqsq38MunZL8pdPSs9JfpEPSOGlgaWnUTXKRfpfsUiephfS7VCKlSJ0l \n T2mt5C91kzpKC6R7pEQpUAqStkuSSqQp0rtSJyOTtEWKlz6Q/lZJqiApvPR1seQjnZSOSd7SbdJc \n aaLUQjomOUtjpM+lDlW7IhbJX4opt+W88eKkogteFj+pUDomSZorPStZpKHSXOlRSVKGNFzKkiKk \n k9K1Upb0mjRAek9aevbqlxVTSXpEekmKlgIkSfHSg9Ia6TvpZilLelC6XToq/UXKkvZI/Su51B7S \n NOk/Uv7ZjWPF45ZtSavkdPZK3pXcFRUH7CKdkJZJ06Uj0lTpqBQuDZd2S7ulByVJAVKsVJXf31fr \n xlMVchZKv5zvu+MktSp3LrnSYMlZ+km6U3pa6nV2sF+kftJT0tMXzD9D0zV91aoL/EACqAbm/AEA \n AAAAAADA2SySl+QlSXpc6iiNlbpJ+0t3uF96QJJkl9ykI5IkB6mjJKmDNEbqJHWVjkkLpGZSL8lH \n 2ls6whZpvdRZskgWabV0WtoqPSzZK/kT/n8B5SgFSzbpEyldipVGSzOlVGmd9LvUosq133mdN962 \n i12WdOm49LZUUnrWL0oJ5R436CE9JR2X/iENLr1cc6VrpH9X8tC7cxjDvlL69lPpLslRGlc62gvS \n QGmq9LxULL1R+aWW9KPU4YITDc9R2ek8J6mSu6KiFKmLNFtqIfWTXpJKpLekP6QPpb9WOUyZat14 \n VcnpUsl3p8XZu7lJn0iHpJHSnyrUfpK6SCqdUwigrtD8AQAAAAAAAMD5nLNUpqtUUvr6IekO6Z/S \n W1JBuYlZ53yJy9lvnaXc0te7pb4Vur2p1YlXtuDnp9ItkkWaI0n6QFou3V6doSq6QLwLXJZ/So7S \n fdJQ6bTUStohSWpZbv9rJEkR5YZyr06wDtIcKVQ6IdmlbdL1pR8Zo5Vdc2MNz58veC4pklt1jn7h \n 06nsrjhHs7NvDGOEg9I90h3Sb6WLuxZIkmIqbxDLq/qNV/WcFb87FRePHSItKp1YWZFxoZIuFBxA \n jaP5AwAAAAAAAIBq2ir1kvpL91eYCFVFhdJhKf/sjcVVfs6fpN7SEOmw9Expz3e1dKX0rfSZNOmS \n Ul003oXdKe2VrpMiJav0RmlXVD55G0nV7NvO8TfJLr0u7ZWurnzGnrckqdkFz8VSteU0y1z4dKp4 \n V/SW0sodt3VpznXStVLv0j8JpTv/uToJq+Ly794yJdJhqasUUlpVAjAbzR8AAAAAAAAAVNMsyb10 \n tla1qqMygVKu9Fa5LSekt6SPy3U/5/ypOI3PmPY3pPQJdhbpLskujahOtXbe/JXFu7AXpQHSFukL \n SdJi6TpJ0tfl9jkuSZp4SakMPtId0nvSW9JfKt/ttCRp3AXPpbOUebEk5V34dGZVfleUlHs9Wcoq \n 99i/U5KkICn/7FmJ/qXjHK5OwqqoYs6qeFmaIi2TDkpPVfg0R5LUufoJAVwGmj8AAAAAAAAAOB9j \n WlhZNVIkqbQayZaSpJ+lFVK6JClaSq7wJcbOtvMNOFnykRZKf5W+kv4phUizqvycP8MtknNp/2cI \n lpylmdU5TWMy3DkTtiqLd+HL8lrp1bhJ6iT1lBZKV0ivlPZwkt6VBkv3n+/6XDRVmaekAilR6lnh \n o7KJid9JftKCC55LkJR29kqYhWcPUhbP2HLh06nsrmgnpUonSr/kPqlruUcVrpPaSg9WcqZlFkrd \n pI8r+bTqN17Vc1b87tjO3vKjtE+6RbpOulf6R4Vb1Bjq6oudGoAaRfMHAAAAAAAAABWElS7q+KaU \n KX1cuvri81Ke9IrkJs2QvKQFkos0T/pDekmSdELaJe2QjkmSnpPSpWWlA74jnZLcpc3Sn6T3pFnS \n PukzyaOaIdtKIWcv7Okl3Vmd9SG3SH+VJCVIT0o/lG6vLN6FL0uaNFx6Qfqb1FdaI7WRdkuTpInS \n ImmB5CBtk+zSa1K8JOlJ6WDVUpXpLt0g3XW+M1oqZUrJ0mEpQmp9wUttlKb7Sr82RnpGkhQvvVu6 \n wupzkqSj0jLJUsnpGDMsz3tXOEjPSnbpH6VH8ZR2Smek26VF0ndSuNTlIt8oJUmJpZflHGnVufGq \n kjPnfN+dHOn10kuxXPpUmiJ1LF0B1UsqkaZIK8oF2ydZpFsvdmoAapTFbr+0uegAAAAAAAAA0CDN \n mDFjtVZrldk5cMmKpeH
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 25 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" pydotprint(cost_and_upd, outfile= ' pydotprint_cost_and_upd.png ' ) \n " ,
" Image( ' pydotprint_cost_and_upd.png ' , width=1000) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Shared variables \n " ,
" ### Update values "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 26 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" C_val, dC_dW_val, dC_db_val = cost_and_grads(x_val, W_val, b_val, y_val) \n " ,
" W_val -= 0.1 * dC_dW_val \n " ,
" b_val -= 0.1 * dC_db_val \n " ,
" \n " ,
" C_val, W_val, b_val = cost_and_upd(x_val, W_val, b_val, y_val) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Using shared variables "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 27 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" [ 1.78587062 0.00189954 -0.28566499] \n "
]
}
] ,
" source " : [
" x = T.vector( ' x ' ) \n " ,
" y = T.vector( ' y ' ) \n " ,
" W = theano.shared(W_val) \n " ,
" b = theano.shared(b_val) \n " ,
" dot = T.dot(x, W) \n " ,
" out = T.nnet.sigmoid(dot + b) \n " ,
" f = theano.function([x], dot) # W is an implicit input \n " ,
" g = theano.function([x], out) # W and b are implicit inputs \n " ,
" print(f(x_val)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 28 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" [ 0.94151144 0.72221187 0.66391952] \n "
]
}
] ,
" source " : [
" print(g(x_val)) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ### Updating shared variables "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 29 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" C = ((out - y) ** 2).sum() \n " ,
" dC_dW, dC_db = theano.grad(C, [W, b]) \n " ,
" upd_W = W - 0.1 * dC_dW \n " ,
" upd_b = b - 0.1 * dC_db \n " ,
" \n " ,
" cost_and_perform_updates = theano.function( \n " ,
" inputs=[x, y], \n " ,
" outputs=C, \n " ,
" updates=[(W, upd_W), \n " ,
" (b, upd_b)]) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 30 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" The output file is available at pydotprint_cost_and_perform_updates.png \n "
]
} ,
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAB90AAAOlCAIAAABPBGD/AAAABmJLR0QA/wD/AP+gvaeTAAAgAElE \n QVR4nOzdeVxU9f4/8NdsgAMKKCj7MuxLoKKmglpmpqbZtTBbXK5paXnz5i29ll1zvd1yqexmptm9 \n Xm1BszTSa3VLcUsRwwUBUXYQAWXfZ+b8/jhf5jcO26DAjPh6PubhY86ZM5/zPnMAP/M+n/P+SARB \n ABERERERERERERERdQmpqQMgIiIiIiIiIiIiIrqHMC9PRERERERERERERNR1mJcnIiIiIiIiIiIi \n Iuo6clMHcG8pLS0VBEGr1ZaVlQFoaGiorKwEUFtbW1NTA6C6urqurs7gXbrNjGFjY6NQKAxWWlpa \n KpVKAEql0tLSEkDPnj3lcjkAW1tbqVQqkUjs7Ozu6NiIiIiIiIiIiIiIyAjMy7dPTU1NaWlpSaOq \n qqqysrLKysqqqqqqqipxTXV1dUVFRVlZmbiyvLy8oqJCrVbf9k4VCoWNjY2RG1dWVjY0NNz2vuRy \n ec+ePW1tbZVKpbW1ta2tbc+ePa2tra2tre3s7MQnNjY2dnZ2SqXSXo+VldVt75SIiIiIiIiIiIjo \n 3iERBMHUMZieWq0uKioqKiq6fv16YWFhUVFRSUmJfv5dp7a21uC99vb2Btlqa2vrXr169erVS1xv \n a2urG8NuMDhdTIKjufHsHavpeHzdpYJmh/CXlpZWV1eLFxXKy8vFCwwGVyAMdtGjRw97e3s7Ozv7 \n W9nZ2Tk6Ovbt27dfv36Ojo6Ojo7iOH3qWFOnTt29e7epoyDqhvi/JBERUeeRSCSmDoHonsA+LRGR \n GbonMqQajeb69es5OTn5+fn5+fnFxcVFRUUFBQViLr6wsPDGjRu6jeVyuaOjo35mWaVSNU03i8Rk \n uvmzsrISx7Pb29t3VJtidr6lCxglJSXp6enik6KiIv3bBRwcHMQEvX6y3sXFxcXFxc3NzcnJSSrl \n tAe3ZSiwyNQxEHUnJ4GNpo6BiIio23sVGGbqGIi6MfZpiYjMVffJy9fX14uZ9+zs7GvXruXm5ubm \n 5oqL169f1+WFe/fu3bdvXzEpHBoaKiaF+/XrJ650dHR0cHAw7YHcLcS7Adzc3IzZWLwWIl4FuX79 \n uvi8oKDg/Pnz4sqbN2+KW8rl8n79+nl4eIhpejc3NxcXF3d3d/FfCwuLzjymu5w7EG3qGIi6Ew4q \n IiIi6gJD2Ykl6kzs0xIRmau7Mi9fXFyc3kRubq5Go8Gtid3Bgwf/4Q9/cHFxERddXV1ZBt0kHBwc \n HBwcgoKCWtqgtrY2Ly9PvI6Sn58vXlY5derUnj17CgoKxDMrk8nc3NxUenx8fFQqVZ8+fbrwUIiI \n iIiIiIiIiIjuiLnn5aurq1NSUi5dunTp0qXU1FQxBV9eXo5bs7RjxoxRqVTe3t7u7u79+vWTyWSm \n Dpzax8rKysfHx8fHp+lLGo2moKAgJycnMzNTdxnmp59+ys3N1Wq1AGxtbcWzHxAQEBISEhQUFBQU \n 1KNHjy4/CCIiIiIiIiIiIqK2mVdevrKyMjk5OSkpKTk5WczFZ2ZmarVahULh6+sbGBgo5t9Fnp6e \n rGpyL5DJZK6urq6urkOHDtVfX19fr5+pT09P/+6779atW9fQ0CCVSr28vIIbhYSEBAYG2tjYmOoQ \n iIiIiIiIiIiIiHRMnJcvLCw8e/bs77//fvbs2bNnz6anpwOwtbUNCAgICgqaO3duYGBgcHCwSqWS \n y83rEgKZnIWFhb+/v7+/v/7KhoaG9PR08e6KlJSUw4cPb9mypaysDIBKpRqox9HR0USBExERERER \n ERER0T2tq5Pd+fn5Z86c0SXic3NzZTKZv7//wIEDX3rppf79+wcFBbm4uHRxVNRtKBSKgICAgIAA \n /ZX5+fnJycmJiYlnz57dsWPHsmXLtFqtu7v7gAEDxBx9REQEf+qIiIiIiIiIiIioa3R6Xl4QhJSU \n lGON0tPTFQpFcHDwgAEDFi9ePHDgwPDwcBYYoU7l4uLi4uLy0EMPiYuVlZWJiYnixaG9e/euXr1a \n rVb7+PhERkaOGDEiMjIyMDBQIpGYNmYiIiIiIiIiIiLqrjolL6/VauPj448ePXr06NETJ04UFxfb \n 2NgMGzbsj3/846hRowYPHmxlZdUZ+yUyho2NTVRUVFRUlLhYU1MTHx9/5MiRuLi4P//5z1VVVY6O \n jsOHDx8xYsSIESMGDRoklUpNGzARERERERERERF1Jx2Zly8vL//xxx9jY2MPHDhQVFRkZ2cXFRW1 \n ePHikSNHRkREsEA8macePXqMHDly5MiRABoaGhISEuLi4uLi4latWlVWVta3b98JEyZMnDhx7Nix \n PXv2NHWwREREREREREREdNfrgFz51atXY2NjY2Nj4+Li1Gr1wIED58+fP2HChMGDB3OgMd1dFArF \n 0KFDhw4dunjxYo1GEx8ff+DAgQMHDvz73/9WKBSjRo2aNGnSo48+qlKpTB0pERERERERERER3a0k \n giDc3juLi4u//PLL//znP/Hx8XZ2dmPHjp0wYcK4ceP69evXsSESmdz169cPHjx44MCBn376qbS0 \n dMiQIdOnT582bZqDg4OpQ/s/U6dO3Y3diDF1HETdSQzwFG77f0kiIiJqk0QiwdfAVFPHQdSNsU9L \n RGSu2j2eva6u7ptvvpk8ebKLi8tf//pXf3////73v0VFRV9//fXMmTOZlKduqV+/frNmzYqJiSkq \n Kjp48KCvr++SJUtcXV0ff/zxvXv31tXVmTpAIiIiIiIiIiIiumu0Iy9fXFy8Zs0aDw+PqVOnVlZW \n fvrppwUFBTt37nzkkUdYO57uEXK5fNy4cbt27SooKNiyZUt5eXl0dLSHh8fatWtv3Lhh6uiIiIiI \n iIiIiIjoLmBUXj4/P/+ll17y8PB4//33586dm5mZ+b///W/WrFmcBpPuWT179pw1a9Yvv/ySkZEx \n Z86cDRs2eHh4LFiw4Nq1a6YOjYiIiIiIiIiIiMxaG3n5ysrKpUuX+vn57du3b926ddnZ2atXr3Z3 \n d++a4DrPjRs3vv3227Vr15o6kI5XXl7eGc1240/sDnl4eKxZsyY7O/vdd9/du3evn5/fm2++WVVV \n Zeq4Os4N4FuAZ/6u0KknKw34B7AOuNI57bcLfyyJiIiIup97pzdLRETUel7+4MGDwcHBW7Zseeut \n t9LS0l566aUePXp0WWRNHTt27G9/+5tEIpFIJHPmzPn+++9vr52UlJR33nlnypQpO3bs6MDw4uLi \n pk+fLoYnzoI7ZMiQ8ePHf/zxxzU1NQYbh4SEvPjii7exF0EQPv3009DQ0P79+/v4+Ii7++WXXwBs \n 3Lhx9OjRtzcTqSAI77777tKlS0eMGBEaGpqcnKy/Ri6Xz5w50/hPLCMjY/z48WPGjDl9+rT++ry8 \n vO3bt0+dOnXYsGGtB/Phhx9GR0cvX7582rRpW7Zs0Z+j5vTp0w899NC4ceOysrJu40g7iVKpfPnl \n l9PS0t54442PP/44JCTkxx9/NHVQHSEFeAeYArTrdyUP2A5MBVo7z4AAfAhEA8uBacAWoNm5iH4F \n JIAdMBC4H5AAVsD9QH/AGpAAJrlFwYRRJQEbG58LwLvAUmAEIAdmtv9kGaMCmAs8DowAXgN8m2yw \n CZB09E5bcXs/lgDUwFtAbqcERURERNQ89mYNsDd759itJSLqHoTmaLXalStXSqXSp556qqCgoNlt \n TMXLywtAbW3tnTSiVqsBBAQEdFRUIjH/7uvrKy5qtdrDhw/7+Ph4enqeO3dOf8sHH3zwr3/9623s \n YtOmTQC++eYbcfHgwYO2trY7duwQBKG+vt7Jyamlc9q6devWOTo6ajSakpKSCRMmHDt2zGDNkSNH \n jP/EpkyZAiA1NbXpS+Jw/tbbWbFihZ+fX1VVlSAIVVVVfn5+q1at0t8gJSUFwNSpU9tziF3n2rVr \n 0dHRUql09erVWq22a3Y
" text/plain " : [
" <IPython.core.display.Image object> "
]
} ,
" execution_count " : 30 ,
" metadata " : {
" image/png " : {
" width " : 1000
}
} ,
" output_type " : " execute_result "
}
] ,
" source " : [
" pydotprint(cost_and_perform_updates, outfile= ' pydotprint_cost_and_perform_updates.png ' ) \n " ,
" Image( ' pydotprint_cost_and_perform_updates.png ' , width=1000) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Advanced Topics \n " ,
" ## Extending Theano \n " ,
" ### The easy way: Python "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 31 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" import theano \n " ,
" import numpy \n " ,
" from theano.compile.ops import as_op \n " ,
" \n " ,
" def infer_shape_numpy_dot(node, input_shapes): \n " ,
" ashp, bshp = input_shapes \n " ,
" return [ashp[:-1] + bshp[-1:]] \n " ,
" \n " ,
" @as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix], \n " ,
" otypes=[theano.tensor.fmatrix], infer_shape=infer_shape_numpy_dot) \n " ,
" def numpy_dot(a, b): \n " ,
" return numpy.dot(a, b) "
]
}
] ,
" metadata " : {
" kernelspec " : {
" display_name " : " Python 3 " ,
" language " : " python " ,
" name " : " python3 "
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
" version " : 3
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
" pygments_lexer " : " ipython3 " ,
" version " : " 3.4.3 "
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}