data-science-ipython-notebooks/deep-learning/theano-tutorial/rnn_tutorial/lstm_text.py

300 lines
11 KiB
Python
Raw Normal View History

import cPickle as pkl
import time
import numpy
import theano
from theano import config
import theano.tensor as T
from theano.tensor.nnet import categorical_crossentropy
from fuel.datasets import TextFile
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme
from fuel.transformers import Batch, Padding
# These files can be downloaded from
# http://www-etud.iro.umontreal.ca/~brakelp/train.txt.gz
# http://www-etud.iro.umontreal.ca/~brakelp/dictionary.pkl
# don't forget to change the paths and gunzip train.txt.gz
TRAIN_FILE = '/u/brakelp/temp/traindata.txt'
VAL_FILE = '/u/brakelp/temp/valdata.txt'
DICT_FILE = '/u/brakelp/temp/dictionary.pkl'
def sequence_categorical_crossentropy(prediction, targets, mask):
prediction_flat = prediction.reshape(((prediction.shape[0] *
prediction.shape[1]),
prediction.shape[2]), ndim=2)
targets_flat = targets.flatten()
mask_flat = mask.flatten()
ce = categorical_crossentropy(prediction_flat, targets_flat)
return T.sum(ce * mask_flat)
def gauss_weight(ndim_in, ndim_out=None, sd=.005):
if ndim_out is None:
ndim_out = ndim_in
W = numpy.random.randn(ndim_in, ndim_out) * sd
return numpy.asarray(W, dtype=config.floatX)
class LogisticRegression(object):
"""Multi-class Logistic Regression Class
The logistic regression is fully described by a weight matrix :math:`W`
and bias vector :math:`b`. Classification is done by projecting data
points onto a set of hyperplanes, the distance to which is used to
determine a class membership probability.
"""
def __init__(self, input, n_in, n_out):
""" Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# initialize with 0 the weights W as a matrix of shape (n_in, n_out)
self.W = theano.shared(value=numpy.zeros((n_in, n_out),
dtype=theano.config.floatX),
name='W', borrow=True)
# initialize the baises b as a vector of n_out 0s
self.b = theano.shared(value=numpy.zeros((n_out,),
dtype=theano.config.floatX),
name='b', borrow=True)
# compute vector of class-membership probabilities in symbolic form
energy = T.dot(input, self.W) + self.b
energy_exp = T.exp(energy - T.max(energy, 2)[:, :, None])
pmf = energy_exp / energy_exp.sum(2)[:, :, None]
self.p_y_given_x = pmf
# compute prediction as class whose probability is maximal in
# symbolic form
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
# parameters of the model
self.params = [self.W, self.b]
def index_dot(indices, w):
return w[indices.flatten()]
class LstmLayer:
def __init__(self, rng, input, mask, n_in, n_h):
# Init params
self.W_i = theano.shared(gauss_weight(n_in, n_h), 'W_i', borrow=True)
self.W_f = theano.shared(gauss_weight(n_in, n_h), 'W_f', borrow=True)
self.W_c = theano.shared(gauss_weight(n_in, n_h), 'W_c', borrow=True)
self.W_o = theano.shared(gauss_weight(n_in, n_h), 'W_o', borrow=True)
self.U_i = theano.shared(gauss_weight(n_h), 'U_i', borrow=True)
self.U_f = theano.shared(gauss_weight(n_h), 'U_f', borrow=True)
self.U_c = theano.shared(gauss_weight(n_h), 'U_c', borrow=True)
self.U_o = theano.shared(gauss_weight(n_h), 'U_o', borrow=True)
self.b_i = theano.shared(numpy.zeros((n_h,), dtype=config.floatX),
'b_i', borrow=True)
self.b_f = theano.shared(numpy.zeros((n_h,), dtype=config.floatX),
'b_f', borrow=True)
self.b_c = theano.shared(numpy.zeros((n_h,), dtype=config.floatX),
'b_c', borrow=True)
self.b_o = theano.shared(numpy.zeros((n_h,), dtype=config.floatX),
'b_o', borrow=True)
self.params = [self.W_i, self.W_f, self.W_c, self.W_o,
self.U_i, self.U_f, self.U_c, self.U_o,
self.b_i, self.b_f, self.b_c, self.b_o]
outputs_info = [T.zeros((input.shape[1], n_h)),
T.zeros((input.shape[1], n_h))]
rval, updates = theano.scan(self._step,
sequences=[mask, input],
outputs_info=outputs_info)
# self.output is in the format (batchsize, n_h)
self.output = rval[0]
def _step(self, m_, x_, h_, c_):
i_preact = (index_dot(x_, self.W_i) +
T.dot(h_, self.U_i) + self.b_i)
i = T.nnet.sigmoid(i_preact)
f_preact = (index_dot(x_, self.W_f) +
T.dot(h_, self.U_f) + self.b_f)
f = T.nnet.sigmoid(f_preact)
o_preact = (index_dot(x_, self.W_o) +
T.dot(h_, self.U_o) + self.b_o)
o = T.nnet.sigmoid(o_preact)
c_preact = (index_dot(x_, self.W_c) +
T.dot(h_, self.U_c) + self.b_c)
c = T.tanh(c_preact)
c = f * c_ + i * c
c = m_[:, None] * c + (1. - m_)[:, None] * c_
h = o * T.tanh(c)
h = m_[:, None] * h + (1. - m_)[:, None] * h_
return h, c
def train_model(batch_size=100, n_h=50, n_epochs=40):
# Load the datasets with Fuel
dictionary = pkl.load(open(DICT_FILE, 'r'))
dictionary['~'] = len(dictionary)
reverse_mapping = dict((j, i) for i, j in dictionary.items())
print("Loading the data")
train = TextFile(files=[TRAIN_FILE],
dictionary=dictionary,
unk_token='~',
level='character',
preprocess=str.lower,
bos_token=None,
eos_token=None)
train_stream = DataStream.default_stream(train)
# organize data in batches and pad shorter sequences with zeros
train_stream = Batch(train_stream,
iteration_scheme=ConstantScheme(batch_size))
train_stream = Padding(train_stream)
# idem dito for the validation text
val = TextFile(files=[VAL_FILE],
dictionary=dictionary,
unk_token='~',
level='character',
preprocess=str.lower,
bos_token=None,
eos_token=None)
val_stream = DataStream.default_stream(val)
# organize data in batches and pad shorter sequences with zeros
val_stream = Batch(val_stream,
iteration_scheme=ConstantScheme(batch_size))
val_stream = Padding(val_stream)
print('Building model')
# Set the random number generator' seeds for consistency
rng = numpy.random.RandomState(12345)
x = T.lmatrix('x')
mask = T.matrix('mask')
# Construct the LSTM layer
recurrent_layer = LstmLayer(rng=rng, input=x, mask=mask, n_in=111, n_h=n_h)
logreg_layer = LogisticRegression(input=recurrent_layer.output[:-1],
n_in=n_h, n_out=111)
cost = sequence_categorical_crossentropy(logreg_layer.p_y_given_x,
x[1:],
mask[1:]) / batch_size
# create a list of all model parameters to be fit by gradient descent
params = logreg_layer.params + recurrent_layer.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# update_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i], grads[i]) pairs.
learning_rate = 0.1
updates = [
(param_i, param_i - learning_rate * grad_i)
for param_i, grad_i in zip(params, grads)
]
update_model = theano.function([x, mask], cost, updates=updates)
evaluate_model = theano.function([x, mask], cost)
# Define and compile a function for generating a sequence step by step.
x_t = T.iscalar()
h_p = T.vector()
c_p = T.vector()
h_t, c_t = recurrent_layer._step(T.ones(1), x_t, h_p, c_p)
energy = T.dot(h_t, logreg_layer.W) + logreg_layer.b
energy_exp = T.exp(energy - T.max(energy, 1)[:, None])
output = energy_exp / energy_exp.sum(1)[:, None]
single_step = theano.function([x_t, h_p, c_p], [output, h_t, c_t])
start_time = time.clock()
iteration = 0
for epoch in range(n_epochs):
print 'epoch:', epoch
for x_, mask_ in train_stream.get_epoch_iterator():
iteration += 1
cross_entropy = update_model(x_.T, mask_.T)
# Generate some text after each 20 minibatches
if iteration % 40 == 0:
try:
prediction = numpy.ones(111, dtype=config.floatX) / 111.0
h_p = numpy.zeros((n_h,), dtype=config.floatX)
c_p = numpy.zeros((n_h,), dtype=config.floatX)
initial = 'the meaning of life is '
sentence = initial
for char in initial:
x_t = dictionary[char]
prediction, h_p, c_p = single_step(x_t, h_p.flatten(),
c_p.flatten())
sample = numpy.random.multinomial(1, prediction.flatten())
for i in range(450):
x_t = numpy.argmax(sample)
prediction, h_p, c_p = single_step(x_t, h_p.flatten(),
c_p.flatten())
sentence += reverse_mapping[x_t]
sample = numpy.random.multinomial(1, prediction.flatten())
print 'LSTM: "' + sentence + '"'
except ValueError:
print 'Something went wrong during sentence generation.'
if iteration % 40 == 0:
print 'epoch:', epoch, ' minibatch:', iteration
val_scores = []
for x_val, mask_val in val_stream.get_epoch_iterator():
val_scores.append(evaluate_model(x_val.T, mask_val.T))
print 'Average validation CE per sentence:', numpy.mean(val_scores)
end_time = time.clock()
print('Optimization complete.')
print('The code ran for %.2fm' % ((end_time - start_time) / 60.))
if __name__ == '__main__':
train_model()