2015-12-27 07:24:30 -05:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : {
" colab_type " : " text " ,
" id " : " 4embtkV0pNxM "
} ,
" source " : [
" Deep Learning with TensorFlow \n " ,
" ============= \n " ,
" \n " ,
" Credits: Forked from [TensorFlow](https://github.com/tensorflow/tensorflow) by Google \n " ,
" \n " ,
" Setup \n " ,
" ------------ \n " ,
" \n " ,
" Refer to the [setup instructions](https://github.com/donnemartin/data-science-ipython-notebooks/tree/feature/deep-learning/deep-learning/tensor-flow-exercises/README.md). \n " ,
" \n " ,
" Exercise 4 \n " ,
" ------------ \n " ,
" \n " ,
" Previously in `2_fullyconnected.ipynb` and `3_regularization.ipynb`, we trained fully connected networks to classify [notMNIST](http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html) characters. \n " ,
" \n " ,
" The goal of this exercise is make the neural network convolutional. "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
}
} ,
" colab_type " : " code " ,
" collapsed " : true ,
" id " : " tm2CQN_Cpwj0 "
} ,
" outputs " : [ ] ,
" source " : [
" # These are all the modules we ' ll be using later. Make sure you can import them \n " ,
" # before proceeding further. \n " ,
" import cPickle as pickle \n " ,
" import numpy as np \n " ,
" import tensorflow as tf "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
} ,
" output_extras " : [
{
" item_id " : 1
}
]
} ,
" colab_type " : " code " ,
" collapsed " : false ,
" executionInfo " : {
" elapsed " : 11948 ,
" status " : " ok " ,
" timestamp " : 1446658914837 ,
" user " : {
" color " : " " ,
" displayName " : " " ,
" isAnonymous " : false ,
" isMe " : true ,
" permissionId " : " " ,
" photoUrl " : " " ,
" sessionId " : " 0 " ,
" userId " : " "
} ,
" user_tz " : 480
} ,
" id " : " y3-cj1bpmuxc " ,
" outputId " : " 016b1a51-0290-4b08-efdb-8c95ffc3cd01 "
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Training set (200000, 28, 28) (200000,) \n " ,
" Validation set (10000, 28, 28) (10000,) \n " ,
" Test set (18724, 28, 28) (18724,) \n "
]
}
] ,
" source " : [
" pickle_file = ' notMNIST.pickle ' \n " ,
" \n " ,
" with open(pickle_file, ' rb ' ) as f: \n " ,
" save = pickle.load(f) \n " ,
" train_dataset = save[ ' train_dataset ' ] \n " ,
" train_labels = save[ ' train_labels ' ] \n " ,
" valid_dataset = save[ ' valid_dataset ' ] \n " ,
" valid_labels = save[ ' valid_labels ' ] \n " ,
" test_dataset = save[ ' test_dataset ' ] \n " ,
" test_labels = save[ ' test_labels ' ] \n " ,
" del save # hint to help gc free up memory \n " ,
" print ' Training set ' , train_dataset.shape, train_labels.shape \n " ,
" print ' Validation set ' , valid_dataset.shape, valid_labels.shape \n " ,
" print ' Test set ' , test_dataset.shape, test_labels.shape "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" colab_type " : " text " ,
" id " : " L7aHrm6nGDMB "
} ,
" source " : [
" Reformat into a TensorFlow-friendly shape: \n " ,
" - convolutions need the image data formatted as a cube (width by height by #channels) \n " ,
" - labels as float 1-hot encodings. "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
} ,
" output_extras " : [
{
" item_id " : 1
}
]
} ,
" colab_type " : " code " ,
" collapsed " : false ,
" executionInfo " : {
" elapsed " : 11952 ,
" status " : " ok " ,
" timestamp " : 1446658914857 ,
" user " : {
" color " : " " ,
" displayName " : " " ,
" isAnonymous " : false ,
" isMe " : true ,
" permissionId " : " " ,
" photoUrl " : " " ,
" sessionId " : " 0 " ,
" userId " : " "
} ,
" user_tz " : 480
} ,
" id " : " IRSyYiIIGIzS " ,
" outputId " : " 650a208c-8359-4852-f4f5-8bf10e80ef6c "
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Training set (200000, 28, 28, 1) (200000, 10) \n " ,
" Validation set (10000, 28, 28, 1) (10000, 10) \n " ,
" Test set (18724, 28, 28, 1) (18724, 10) \n "
]
}
] ,
" source " : [
" image_size = 28 \n " ,
" num_labels = 10 \n " ,
" num_channels = 1 # grayscale \n " ,
" \n " ,
" import numpy as np \n " ,
" \n " ,
" def reformat(dataset, labels): \n " ,
" dataset = dataset.reshape( \n " ,
" (-1, image_size, image_size, num_channels)).astype(np.float32) \n " ,
" labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) \n " ,
" return dataset, labels \n " ,
" train_dataset, train_labels = reformat(train_dataset, train_labels) \n " ,
" valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) \n " ,
" test_dataset, test_labels = reformat(test_dataset, test_labels) \n " ,
" print ' Training set ' , train_dataset.shape, train_labels.shape \n " ,
" print ' Validation set ' , valid_dataset.shape, valid_labels.shape \n " ,
" print ' Test set ' , test_dataset.shape, test_labels.shape "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
}
} ,
" colab_type " : " code " ,
" collapsed " : true ,
" id " : " AgQDIREv02p1 "
} ,
" outputs " : [ ] ,
" source " : [
" def accuracy(predictions, labels): \n " ,
" return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) \n " ,
" / predictions.shape[0]) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" colab_type " : " text " ,
" id " : " 5rhgjmROXu2O "
} ,
" source " : [
" Let ' s build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we ' ll limit its depth and number of fully connected nodes. "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
}
} ,
" colab_type " : " code " ,
" collapsed " : true ,
" id " : " IZYv70SvvOan "
} ,
" outputs " : [ ] ,
" source " : [
" batch_size = 16 \n " ,
" patch_size = 5 \n " ,
" depth = 16 \n " ,
" num_hidden = 64 \n " ,
" \n " ,
" graph = tf.Graph() \n " ,
" \n " ,
" with graph.as_default(): \n " ,
" \n " ,
" # Input data. \n " ,
" tf_train_dataset = tf.placeholder( \n " ,
" tf.float32, shape=(batch_size, image_size, image_size, num_channels)) \n " ,
" tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) \n " ,
" tf_valid_dataset = tf.constant(valid_dataset) \n " ,
" tf_test_dataset = tf.constant(test_dataset) \n " ,
" \n " ,
" # Variables. \n " ,
" layer1_weights = tf.Variable(tf.truncated_normal( \n " ,
" [patch_size, patch_size, num_channels, depth], stddev=0.1)) \n " ,
" layer1_biases = tf.Variable(tf.zeros([depth])) \n " ,
" layer2_weights = tf.Variable(tf.truncated_normal( \n " ,
" [patch_size, patch_size, depth, depth], stddev=0.1)) \n " ,
" layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) \n " ,
" layer3_weights = tf.Variable(tf.truncated_normal( \n " ,
" [image_size / 4 * image_size / 4 * depth, num_hidden], stddev=0.1)) \n " ,
" layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) \n " ,
" layer4_weights = tf.Variable(tf.truncated_normal( \n " ,
" [num_hidden, num_labels], stddev=0.1)) \n " ,
" layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) \n " ,
" \n " ,
" # Model. \n " ,
" def model(data): \n " ,
" conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding= ' SAME ' ) \n " ,
" hidden = tf.nn.relu(conv + layer1_biases) \n " ,
" conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding= ' SAME ' ) \n " ,
" hidden = tf.nn.relu(conv + layer2_biases) \n " ,
" shape = hidden.get_shape().as_list() \n " ,
" reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) \n " ,
" hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) \n " ,
" return tf.matmul(hidden, layer4_weights) + layer4_biases \n " ,
" \n " ,
" # Training computation. \n " ,
" logits = model(tf_train_dataset) \n " ,
" loss = tf.reduce_mean( \n " ,
" tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) \n " ,
" \n " ,
" # Optimizer. \n " ,
" optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) \n " ,
" \n " ,
" # Predictions for the training, validation, and test data. \n " ,
" train_prediction = tf.nn.softmax(logits) \n " ,
" valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) \n " ,
" test_prediction = tf.nn.softmax(model(tf_test_dataset)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" cellView " : " both " ,
" colab " : {
" autoexec " : {
" startup " : false ,
" wait_interval " : 0
} ,
" output_extras " : [
{
" item_id " : 37
}
]
} ,
" colab_type " : " code " ,
" collapsed " : false ,
" executionInfo " : {
" elapsed " : 63292 ,
" status " : " ok " ,
" timestamp " : 1446658966251 ,
" user " : {
" color " : " " ,
" displayName " : " " ,
" isAnonymous " : false ,
" isMe " : true ,
" permissionId " : " " ,
" photoUrl " : " " ,
" sessionId " : " 0 " ,
" userId " : " "
} ,
" user_tz " : 480
} ,
" id " : " noKFb2UovVFR " ,
" outputId " : " 28941338-2ef9-4088-8bd1-44295661e628 "
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Initialized \n " ,
" Minibatch loss at step 0 : 3.51275 \n " ,
" Minibatch accuracy: 6.2 % \n " ,
" Validation accuracy: 12.8 % \n " ,
" Minibatch loss at step 50 : 1.48703 \n " ,
" Minibatch accuracy: 43.8 % \n " ,
" Validation accuracy: 50.4 % \n " ,
" Minibatch loss at step 100 : 1.04377 \n " ,
" Minibatch accuracy: 68.8 % \n " ,
" Validation accuracy: 67.4 % \n " ,
" Minibatch loss at step 150 : 0.601682 \n " ,
" Minibatch accuracy: 68.8 % \n " ,
" Validation accuracy: 73.0 % \n " ,
" Minibatch loss at step 200 : 0.898649 \n " ,
" Minibatch accuracy: 75.0 % \n " ,
" Validation accuracy: 77.8 % \n " ,
" Minibatch loss at step 250 : 1.3637 \n " ,
" Minibatch accuracy: 56.2 % \n " ,
" Validation accuracy: 75.4 % \n " ,
" Minibatch loss at step 300 : 1.41968 \n " ,
" Minibatch accuracy: 62.5 % \n " ,
" Validation accuracy: 76.0 % \n " ,
" Minibatch loss at step 350 : 0.300648 \n " ,
" Minibatch accuracy: 81.2 % \n " ,
" Validation accuracy: 80.2 % \n " ,
" Minibatch loss at step 400 : 1.32092 \n " ,
" Minibatch accuracy: 56.2 % \n " ,
" Validation accuracy: 80.4 % \n " ,
" Minibatch loss at step 450 : 0.556701 \n " ,
" Minibatch accuracy: 81.2 % \n " ,
" Validation accuracy: 79.4 % \n " ,
" Minibatch loss at step 500 : 1.65595 \n " ,
" Minibatch accuracy: 43.8 % \n " ,
" Validation accuracy: 79.6 % \n " ,
" Minibatch loss at step 550 : 1.06995 \n " ,
" Minibatch accuracy: 75.0 % \n " ,
" Validation accuracy: 81.2 % \n " ,
" Minibatch loss at step 600 : 0.223684 \n " ,
" Minibatch accuracy: 100.0 % \n " ,
" Validation accuracy: 82.3 % \n " ,
" Minibatch loss at step 650 : 0.619602 \n " ,
" Minibatch accuracy: 87.5 % \n " ,
" Validation accuracy: 81.8 % \n " ,
" Minibatch loss at step 700 : 0.812091 \n " ,
" Minibatch accuracy: 75.0 % \n " ,
" Validation accuracy: 82.4 % \n " ,
" Minibatch loss at step 750 : 0.276302 \n " ,
" Minibatch accuracy: 87.5 % \n " ,
" Validation accuracy: 82.3 % \n " ,
" Minibatch loss at step 800 : 0.450241 \n " ,
" Minibatch accuracy: 81.2 % \n " ,
" Validation accuracy: 82.3 % \n " ,
" Minibatch loss at step 850 : 0.137139 \n " ,
" Minibatch accuracy: 93.8 % \n " ,
" Validation accuracy: 82.3 % \n " ,
" Minibatch loss at step 900 : 0.52664 \n " ,
" Minibatch accuracy: 75.0 % \n " ,
" Validation accuracy: 82.2 % \n " ,
" Minibatch loss at step 950 : 0.623835 \n " ,
" Minibatch accuracy: 87.5 % \n " ,
" Validation accuracy: 82.1 % \n " ,
" Minibatch loss at step 1000 : 0.243114 \n " ,
" Minibatch accuracy: 93.8 % \n " ,
" Validation accuracy: 82.9 % \n " ,
" Test accuracy: 90.0 % \n "
]
}
] ,
" source " : [
" num_steps = 1001 \n " ,
" \n " ,
" with tf.Session(graph=graph) as session: \n " ,
2017-02-05 22:43:24 +05:30
" tf.global_variables_initializer().run() \n " ,
2015-12-27 07:24:30 -05:00
" print \" Initialized \" \n " ,
" for step in xrange(num_steps): \n " ,
" offset = (step * batch_size) % (train_labels.shape[0] - batch_size) \n " ,
" batch_data = train_dataset[offset:(offset + batch_size), :, :, :] \n " ,
" batch_labels = train_labels[offset:(offset + batch_size), :] \n " ,
" feed_dict = { tf_train_dataset : batch_data, tf_train_labels : batch_labels} \n " ,
" _, l, predictions = session.run( \n " ,
" [optimizer, loss, train_prediction], feed_dict=feed_dict) \n " ,
" if (step % 50 == 0): \n " ,
" print \" Minibatch loss at step \" , step, \" : \" , l \n " ,
" print \" Minibatch accuracy: %.1f %% \" % a ccuracy(predictions, batch_labels) \n " ,
" print \" Validation accuracy: %.1f %% \" % a ccuracy( \n " ,
" valid_prediction.eval(), valid_labels) \n " ,
" print \" Test accuracy: %.1f %% \" % a ccuracy(test_prediction.eval(), test_labels) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" colab_type " : " text " ,
" id " : " KedKkn4EutIK "
} ,
" source " : [
" --- \n " ,
" Problem 1 \n " ,
" --------- \n " ,
" \n " ,
" The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides a max pooling operation (`nn.max_pool()`) of stride 2 and kernel size 2. \n " ,
" \n " ,
" --- "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" colab_type " : " text " ,
" id " : " klf21gpbAgb- "
} ,
" source " : [
" --- \n " ,
" Problem 2 \n " ,
" --------- \n " ,
" \n " ,
" Try to get the best performance you can using a convolutional net. Look for example at the classic [LeNet5](http://yann.lecun.com/exdb/lenet/) architecture, adding Dropout, and/or adding learning rate decay. \n " ,
" \n " ,
" --- "
]
}
] ,
" metadata " : {
" colabVersion " : " 0.3.2 " ,
" colab_default_view " : { } ,
" colab_views " : { } ,
" kernelspec " : {
2017-02-05 22:43:24 +05:30
" display_name " : " Python 2 " ,
2015-12-27 07:24:30 -05:00
" language " : " python " ,
2017-02-05 22:43:24 +05:30
" name " : " python2 "
2015-12-27 07:24:30 -05:00
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
2017-02-05 22:43:24 +05:30
" version " : 2
2015-12-27 07:24:30 -05:00
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
2017-02-05 22:43:24 +05:30
" pygments_lexer " : " ipython2 " ,
" version " : " 2.7.12 "
2015-12-27 07:24:30 -05:00
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}