2015-04-19 14:31:20 -04:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # scikit-learn-linear-reg "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
2015-05-31 09:46:22 -04:00
" Credits: Forked from [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas \n " ,
" \n " ,
2015-04-19 14:31:20 -04:00
" * Linear Regression "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" % matplotlib inline \n " ,
" import numpy as np \n " ,
" import matplotlib.pyplot as plt \n " ,
" import seaborn; \n " ,
" from sklearn.linear_model import LinearRegression \n " ,
" import pylab as pl \n " ,
" \n " ,
" seaborn.set() "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Linear Regression \n " ,
" \n " ,
" Linear Regression is a supervised learning algorithm that models the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variable) denoted X. \n " ,
" \n " ,
" Generate some data: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 14 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAd4AAAFVCAYAAABB6Y7YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAFLVJREFUeJzt3W2MZNl5F/B/r3fda5zyumQqHoLDNCTZw4ioTQuD4x3H \n 8SovQGQD9liiCcSxSUIsD8wqTJNgJ9kPJFYsecZSNh4Sxy8xfICRyDpvSgAJx3HIgIyAMRuYzUGb \n qFcoykJjNfZgrSext/jQPePxzna9NH1PdVX9ftJIc6ur6z46avW/n3PPPXdlOBwGAGjjrlkXAADL \n RPACQEOCFwAaErwA0JDgBYCGBC8ANHT3qC+WUu5K8sEk9yd5Jsn31lpri8IAYBGN63i/LckLa62v \n TvKPkryr+5IAYHGNC96nk9xXSllJcl+SP+i+JABYXCOnmpNcSXJvkt9O8pIkr++8IgBYYCujtows \n pbwze1PNP1RKeVmSX0vy9bXW5+x8h8PhcGVlpZtKAeB4mir4xnW8L0zy2f3/7ya5J8nzDjzzykp2 \n dq5Pc36mNBj0jHEDxrl7xrh7xriNwaA31fvHBe97kvxsKeXfZi9031FrffqQtQHA0hsZvLXW/5Pk \n DY1qAYCFZwMNAGhI8AJAQ4IXABoSvADQkOAFgIYELwA0JHgBoCHBCwANCV4AaEjwAkBDghcAGhK8 \n ANCQ4AWAhgQvADQkeAGgIcELAA0JXgBoSPACQEOCFwAaErwA0JDgBYCGBC8ANCR4AaAhwQsADQle \n AGjo7lkXAACtXbh8NY9v7yZJTq31s7W50ezcOl4AlsqFy1dzbXs3wyTDJNe2d3P+0pU8+dT1JucX \n vAAslZud7u12r9/II48+1uT8ghcAGhK8ACyVU2v9O17r91Zz7sx6k/MLXgCWytbmRvq91VvH/d5q \n Lp49nZMnek3OP3ZVcynlu5K8Zf/wBUlenuSltdbPdlgXAHTm3Jn1W9d0W3W6N60Mh8OJ31xKeV+S \n T9VaP3jAW4Y7O21WhS2rwaAXY9w949w9Y9w9Y9zGYNBbmeb9E081l1JekeTPjAhdAGCMiTveUspH \n k/xErfUTI942efsMAIthqo53op2rSikvTnL/mNBNEtMaHTN11IZx7p4x7p4xbmMwmG5R1qRTza9J \n 8rGpqwEAvsykwXt/kt/pshAAWAYTTTXXWi90XQgALAMbaABAQ4IXABoSvADQkOAFgIYELwA0JHgB \n oCHBCwANCV4AaEjwAkBDghcAGhK8ANCQ4AWAhgQvADQkeAGgIcELAA0JXgBoSPACQEOCFwAaErwA \n 0JDgBYCGBC8ANHT3rAsAgGlcuHw1j2/vJklOrfWztbkx44qmo+MFYG5cuHw117Z3M0wyTHJtezfn \n L13Jk09dn3VpExO8AMyNm53u7Xav38gjjz42g2oOR/ACQEOCF4C5cWqtf8dr/d5qzp1Zn0E1hyN4 \n AZgbW5sb6fdWbx33e6u5ePZ0Tp7ozbCq6QheAObKuTPr6fdW567TvcntRADMlZMnerl49vSsyzg0 \n HS8ANDS24y2lvCPJ65Pck+R9tdZ/0nlVALCgRna8pZTXJnlVrfWBJK9N8qca1AQAC2tcx/ttSX6r \n lPILSV6U5B90XxIALK5xwTtI8tVJXpe9bveXkvzprosCgEW1MhwOD/xiKeXHk+zUWt+7f/ypJN9S \n a/3fB3zLwR8GAItpZZo3j+t4fzPJQ0neW0r5qiQvTPLpUd+wszM/G1XPo8GgZ4wbMM7dM8bdM8Zt \n DAbTbd4xcnFVrfVXklwtpfyH7E0zv73WqqsFgEMaeztRrfUHWxQCAMvABhoA0JDgBYCGBC8ANCR4 \n AaAhwQsADQleAGhI8AJAQ4IXABoSvADQkOAFgIYELwA0JHgBoCHBCwANCV4AaEjwAkBDghcAGhK8 \n ANCQ4AWAhgQvADQkeAGgIcELAA0JXgBo6O5ZFwDMpwuXr+bx7d0kyam1frY2N2ZcEcwHHS8wtQuX \n r+ba9m6GSYZJrm3v5vylK3nyqeuzLg2OPcELTO1mp3u73es38sijj82gGpgvghcAGnKNF7jDuOu3 \n p9b6ufasrrffW825M+vNaoR5peMFvswk12+3NjfS763eOu73VnPx7OmcPNFrXzDMGcELfJlJr9+e \n O7Oefm9VpwtTMtUMHMrJE71cPHt61mXA3BkbvKWU/5zkM/uHv1tr/e5uSwJmyfVb6NbI4C2l3Jsk \n tdYH25QDzNrW5kbOX7qS3es3knzp+i1wNMZd4315kj9SSvnXpZSPlVJe2aIoYLZcv4XujJtq/lyS \n 99RaP1RK+bok/7KUcn+t9ZkGtQEz4votdGdlOBwe+MVSyvOT3FVr/fz+8SeTvLHW+nsHfMvBHwYA \n i2llmjeP63jfmmQ9ydlSylcleVGS3x/1DTs79mrt0mDQM8YNGOfuGePuGeM2BoPp7l8fF7wfSvKz \n pZTf2D9+q2lmADi8kcFba/1Cku9sVAsALDw7VwFAQ4IXABqyZSQAR2rc062WnY4XgCMzydOtlp3g \n BeDITPp0q2UmeAGgIcELwJE5tda/4zV7fn85wQvAkdna3Ei/t3rr+ObTrU6emG53p0UmeAE4Up5u \n NZrbiYC55/aV48XTrUbT8QJzze0rzBvBC8w1t68wbwQvADQkeIG55vYV5o3gBeaa21eYN1Y1A3Pv \n 3Jn1W9d0l7XTtbJ7fqwMh8Oj/Lzhzo6VhF0aDHoxxt0zzt0zxkfn5sru2/V7q3n4e74h960+b0ZV \n LY/BoLcyzftNNQPMuYNWdv/Yhz85g2oYR/ACQEOCF2DOHbSy+4f/9itnUA3jCF6AOXfQyu6vfdmL \n Z1gVBxG8AAvAgwnmh9uJABaABxPMDx0vADQkeAGgIVPNcMTsIASMouOFI+TZsMA4Ol44QqOeDWvh \n y5dcuHw1jz+5mwzNCrB8dLxAU7dmBYZmBVhOgheOkGfDjjdqVgCWgeCFI+TZsMA4EwVvKeUrSyn/ \n o5Ryf9cFwbyzg9BoZgVYdmMXV5VS7kny/iSf674cmH92EBpta3Mj5y9dye71G0m+NCvAZNyuNv8m \n 6Xjfk+Snkvx+x7UAS+LcmfW85L57dbpTcrvaYlgZDocHfrGU8pYkf7zW+q5SyseTvK3WWkd83sEf \n BrBgfuSn/13+yxM7SZKXf+0gP/q2Bzo931/Z+sU816/sl9x3bz7y8F/s9NxHrfXYdWxlqjePCd5P \n JLf+uPqzSWqSv1pr/Z8HfMtwZ8dfXl0aDHoxxt0zzt2b9zG+2X3e7mYH39Viuu9+9689Z3dz0HT9 \n cR3jWYxdlwaD3lTBO3Kqudb6TbXW19ZaH0zyqSRvHhG6AEtjFrdFLcrCtGW/pcztRABzwu1qi2Hi \n 4K21Plhr/e9dFgMwL2bVfS7C7WqL0rkf1shrvIfgGm/Hjus1m0VjnLu3CGN83G+LOs5jfNzHbhpH \n eo0XgIMtQvc5K8s8djreOXOc/4JdJMa5e8a4e8a4DR0vABxjghcAGhK8ANCQ4AWAhgQvADQkeAGg \n IcELAA0JXgBoSPACQEOCFwAaErwA0JDgBYCG7p51AUBbFy5fzePbu0n2nou6tbkx44pgueh4YYlc \n uHw117Z3M0wyTHJtezfnL13Jk095gg20InhhidzsdG+3e/1GHnn0sRlUA8tJ8AJAQ4IXlsiptf4d \n r/V7qzl3Zn0G1cByErywRLY2N9Lvrd467vdWc/Hs6Zw80ZthVbBcBC8smXNn1tPvrep0YUbcTgRL \n 5uSJXi6ePT3rMmBp6XgBoCHBCwANCV4AaEjwAkBDghcAGhK8ANCQ4AWAhsbex1tKeV6SDyS5P3sP \n NHlbrfW/dV0YACyiSTre1yV5ptb66iQ/nORd3ZYEAItrbPDWWn8xyfftH64lufO5YgDARCbaMrLW \n +sVSykeSvCHJmzqtCAAW2MpwOJz4zaWUlyb5ZJJTtdann+Mtk38YACyGlWnePMniqu9M8rJa648n \n eTrJM/v/ntPOzvVpzs+
" text/plain " : [
" <matplotlib.figure.Figure at 0x11006e550> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" # Create some simple data \n " ,
" import numpy as np \n " ,
" np.random.seed(0) \n " ,
" X = np.random.random(size=(20, 1)) \n " ,
" y = 3 * X.squeeze() + 2 + np.random.randn(20) \n " ,
" \n " ,
" plt.plot(X.squeeze(), y, ' o ' ); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Fit the model: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 15 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAd4AAAFVCAYAAABB6Y7YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzt3WlwG2l+3/EveF8QCZJoUDdHI6lFHYAIzK09y0fKqbXj \n XbnKihNfsR07nkRbzih2dh3vi9iuuGo1rvLYEx9rrzd5kahij484Z1Xs9drW2rtlgAIokXpGx1DS \n jEZskAIp3gfQeQGKqxmNSIJDNAjg96maKoJsoP/zDAY/PE8//Tw+13URERERb9SUugAREZFqouAV \n ERHxkIJXRETEQwpeERERDyl4RUREPKTgFRER8VDdWn+0bbsG+F3gMJADfsIYY7woTEREpBKt1+P9 \n TqDVGPMR4N8Dv1z8kkRERCrXesE7B7Tbtu0D2oHF4pckIiJSudYcagYuAk3AVaAL+O6iVyQiIlLB \n fGstGWnb9ufJDzX/vG3be4C/AI4bYz6w5+u6ruvz+YpTqYiIyPZUUPCt1+NtBR6s/JwB6oHaJ57Z \n 5yOdnirk/FKgYNCvNvaA2rn41MbFpzb2RjDoL+j49YL3i8Dv27b91+RD93PGmLlN1iYiIlL11gxe \n Y8wE8GmPahEREal4WkBDRETEQwpeERERDyl4RUREPKTgFRER8ZCCV0RExEMKXhEREQ8peEVERDyk \n 4BUREfGQgldERMRDCl4REREPKXhFREQ8pOAVERHxkIJXRETEQwpeERERDyl4RUREPKTgFRER8ZCC \n V0RExEMKXhEREQ8peEVERDyk4BUREfGQgldERMRDCl4REREPKXhFREQ8pOAVERHxkIJXRETEQ3Wl \n LkBERMRr5y8MMDySAaCvN8C5M/2enVs9XhERqSrnLwwwNJLBBVxgaCTDK69f5Na9KU/Or+AVEZGq \n 8rCn+6jM1AKvvZHy5PwKXhEREQ8peEVEpKr09QYe+13A38jZ02FPzq/gFRGRqnLuTD8Bf+Pq44C/ \n kVdfPsX+Hr8n5193VrNt2z8M/MjKw2YgAoSMMQ+KWJeIiEjRnD0dXr2m61VP9yGf67obPti27d8A \n LhljfvcJh7jptDezwqpVMOhHbVx8aufiUxsXn9rYG8Gg31fI8RsearZt+xng2BqhKyIiIuvYcI/X \n tu0/An7NGPO1NQ7bePdZRESkMhTU493QylW2bXcAh9cJXQANaxSZho68oXYuPrVx8amNvREMFjYp \n a6NDzR8D/rzgakREROQ9Nhq8h4EbxSxERESkGmxoqNkYc77YhYiIiFQDLaAhIiLiIQWviIiIhxS8 \n IiIiHlLwioiIeEjBKyIi4iEFr4iIiIcUvCIiIh5S8IqIiHhIwSsiIuIhBa+IiIiHFLwiIiIeUvCK \n iIh4SMErIiLiIQWviIiIhxS8IiIiHlLwioiIeEjBKyIi4iEFr4iIiIcUvCIiIh5S8IqIiHhIwSsi \n IuKhulIXICIiUojzFwYYHskA0Ncb4NyZ/hJXVBj1eEVEpGycvzDA0EgGF3CBoZEMr7x+kVv3pkpd \n 2oYpeEVEpGw87Ok+KjO1wGtvpEpQzeYoeEVERDyk4BURkbLR1xt47HcBfyNnT4dLUM3mKHhFRKRs \n nDvTT8DfuPo44G/k1ZdPsb/HX8KqCqPgFRGRsnL2dJiAv7HseroP6XYiEREpK/t7/Lz68qlSl7Fp \n 6vGKiIh4aN0er23bnwO+G6gHfsMY85+KXpWIiEiFWrPHa9v2J4AXjTEvAZ8ADnhQk4iISMVar8f7 \n ncCgbdt/AuwA/k3xSxIREalc6wVvENgLfIp8b/e/A0eKXZSIiEil8rmu+8Q/2rb9H4C0MeZXVx5f \n Ar7dGDP2hKc8+cVEREQqk6+Qg9fr8f4N8FngV23b3gW0AuNrPSGdLp+FqstRMOhXG3tA7Vx8auPi \n Uxt7IxgsbPGONSdXGWP+JzBg2/Y3yQ8z/7QxRr1aERGRTVr3diJjzM95UYiIiEg10AIaIiIiHlLw \n ioiIeEjBKyIi4iEFr4iIiIcUvCIiIh5S8IqIiHhIwSsiIuIhBa+IiIiHFLwiIiIeUvCKiIh4SMEr \n IiLiIQWviIiIhxS8IiIiHlLwioiIeEjBKyIi4iEFr4iIiIcUvCIiIh5S8IqIiGzS/PJ8wc+pK0Id \n IiIiFWtsbpyEkyIxmuTO9F3+2/f/ZkHPV/CKiIis4/58ZiVsU9yaugNAra+W411HCn4tBa+IiMgH \n yMxPMJAeJDGa5K0HtwGo8dXQ13mYmBUhEjxGS31Lwa+r4BUREVkxufCAAWeQuJPk5uQIAD582IGD \n K2F7nLaG1g91DgWviGzK+QsDDI9kAOjrDXDuTH+JKxLZnKnFaS6lB4mPJrk+8RYuLj58HOx4ipgV \n 4aR1gh0N/i07n4JXRAp2/sIAQyuhCzA0kuGV1y9y9nSY/T1b9wElUizTizMk05dJOClM5jouLgBP \n t/cStSL0Wydob9xRlHMreEWkYMOPhO5DmakFXnsjxasvnypBRSLrm12a5VL6CgkniclcJ+fmAHhq \n xz6iVph+K0ygqaPodSh4RUSkYs0tz5FKDxF3kly9f42smwVgn383UStC1IrQ1RzwtCYFr4g8Zr3r \n t329gfcMNQME/I2cPR32rEaRJ5lfnmdwbJi4k2R43LC8ErZ72nYRsyL0W2GCLV0lq8/nuu5Wvp6b \n Tk9t5evJ+wSDftTGxVfN7fz+67fwrVB99PrtK69fJDO1sPr3QoeYq7mNvVJNbbyQXeTy2DAJJ8mV \n 8ass5ZYB2NXak+/ZhsKEWoJFOXcw6PcVcrx6vCLyHhu9fnv2dJjX3kit/izitcXsEkPjV4k7SS6P \n DbOYWwKgp8UiGooQs8L0tIZKXOXjFLwisin7e/yaSCWeW8otMzRuSDhJBseGWMguAmA1dxMNRYha \n YXa19uDzFdQJ9dS6wWvbdgKYXHl40xjzY8UtSURKSddvZbtZzi1z9f41Ek6KZPoK89n8xgRdTZ18 \n fE8+bPe07drWYfuoNYPXtu0mAGPMJ70pR0RK7dyZ/g99/Vbkw8rmspjMdeJOkmT6CnPLcwAEGjs4 \n tfs5YlaEff49ZRO2j1qvxxsBWmzb/r8rx37eGPON4pclIqWk67dSCtlclmsTN0k4SS6lLzOzNAtA \n R2M7L+58hqgVpnfHvrIM20etF7wzwBeNMb9n2/Yh4H/btn3YGJPzoDYRKRFdvxWv5Nwc1yfeIu4k \n ueQMMr00A8COBj8f33OKqBXmQPt+anyVs338mrcT2bbdANQYY+ZXHn8D+Iwx5p0nPGVL700SEZHK \n k3NzvDl2k6/fjvN3byeYmH8AwI7GNl7YE+WlfTGOdB+kpqZswnZLbyf6USAMvGzb9i5gB/DuWk+o \n lnvGSqWa7ssrJbVz8amNi287tbHruow8uE3cSTLgDDKxkJ+z21rfwqldzxG1IhzqOEBtTS0A4+Mz \n pSy3IMFgYeuTrxe8vwf8vm3bf7Xy+Ec1zCwiIhvhui63p94m7iRJjKbILEwA0FzXzIs7nyVqhbED \n B1fDtlqsGbzGmGXgBz2qRUREypzrurw9fZf4aJKEk2J8/j4ATbVNPN8TI2qFOdJ5iLqa6l1Gonr/ \n zUVEZEu4rsvdmXskVsLWmRsDoLG2gWdD/UStMH1dNvVVHLaPUiuIiMimvDszuhq292YdABpq6ola \n YWJWhKNdR2iorS9xlduPgldERDZsdDa9GrZ3Z+4BUF9Tx8ngCaJWmOPdffz6H1zh10fSQPoDd7eq \n dgpeERFZU3p2nISTJO4keWc6f2NLna+WcPcxYlaY491HaaprBB7f3WpoJMMrr198bHeraqbgFRGR \n x4zP3SfhpEg4SW5P5ZduqPXVcryrj6gVJhw8SnNd82PP2+juVtVMwSsiIgBk5icYcFLEnRQjD24D \n UOOr4WinTTQUIdJ9lJb6lhJXWf4UvCIiVWxiYZIBZ5CEk+Lm5AiQD9sjgUNEQ2EiweO01bdu+PW0 \n u9X6FLwiIlXmweIUl5x
" text/plain " : [
" <matplotlib.figure.Figure at 0x103f774d0> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" model = LinearRegression() \n " ,
" model.fit(X, y) \n " ,
" \n " ,
" # Plot the data and the model prediction \n " ,
" X_fit = np.linspace(0, 1, 100)[:, np.newaxis] \n " ,
" y_fit = model.predict(X_fit) \n " ,
" \n " ,
" plt.plot(X.squeeze(), y, ' o ' ) \n " ,
" plt.plot(X_fit.squeeze(), y_fit); "
]
}
] ,
" metadata " : {
" kernelspec " : {
" display_name " : " Python 2 " ,
" language " : " python " ,
" name " : " python2 "
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
" version " : 2
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
" pygments_lexer " : " ipython2 " ,
" version " : " 2.7.9 "
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}