2017-08-26 08:25:13 -04:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
2017-08-26 08:47:27 -04:00
|
|
|
"Credits: Forked from [deep-learning-keras-tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio"
|
2017-08-26 08:25:13 -04:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "slide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"# ConvNet HandsOn with Keras"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"## Problem Definition\n",
|
|
|
|
"\n",
|
|
|
|
"*Recognize handwritten digits*"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"## Data\n",
|
|
|
|
"\n",
|
|
|
|
"The MNIST database ([link](http://yann.lecun.com/exdb/mnist)) has a database of handwritten digits. \n",
|
|
|
|
"\n",
|
|
|
|
"The training set has $60,000$ samples. \n",
|
|
|
|
"The test set has $10,000$ samples.\n",
|
|
|
|
"\n",
|
|
|
|
"The digits are size-normalized and centered in a fixed-size image. \n",
|
|
|
|
"\n",
|
|
|
|
"The data page has description on how the data was collected. It also has reports the benchmark of various algorithms on the test dataset. "
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"### Load the data\n",
|
|
|
|
"\n",
|
|
|
|
"The data is available in the repo's `data` folder. Let's load that using the `keras` library. \n",
|
|
|
|
"\n",
|
|
|
|
"For now, let's load the data and see how it looks."
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 1,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stderr",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"Using Theano backend.\n",
|
|
|
|
"Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"import numpy as np\n",
|
|
|
|
"import keras\n",
|
|
|
|
"from keras.datasets import mnist"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 2,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": true,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "skip"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"!mkdir -p $HOME/.keras/datasets/euroscipy_2016_dl-keras/data/"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 4,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# Set the full path to mnist.pkl.gz\n",
|
|
|
|
"path_to_dataset = \"euroscipy_2016_dl-keras/data/mnist.pkl.gz\""
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 5,
|
|
|
|
"metadata": {
|
|
|
|
"code_folding": [],
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "fragment"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"Downloading data from https://s3.amazonaws.com/img-datasets/mnist.pkl.gz\n",
|
|
|
|
"15024128/15296311 [============================>.] - ETA: 0s"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# Load the datasets\n",
|
|
|
|
"(X_train, y_train), (X_test, y_test) = mnist.load_data(path_to_dataset)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "slide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"# Basic data analysis on the dataset"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 6,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# What is the type of X_train?\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 8,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# What is the type of y_train?\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 9,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# Find number of observations in training data\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 10,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# Find number of observations in test data\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 23,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"array([[[0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" ..., \n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0]],\n",
|
|
|
|
"\n",
|
|
|
|
" [[0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" ..., \n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 23,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# Display first 2 records of X_train\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 24,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4], dtype=uint8)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 24,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# Display the first 10 records of y_train\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 26,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8),\n",
|
|
|
|
" array([5923, 6742, 5958, 6131, 5842, 5421, 5918, 6265, 5851, 5949]))"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 26,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# Find the number of observations for each digit in the y_train dataset \n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 27,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8),\n",
|
|
|
|
" array([ 980, 1135, 1032, 1010, 982, 892, 958, 1028, 974, 1009]))"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 27,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# Find the number of observations for each digit in the y_test dataset \n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 5,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"(60000, 28, 28)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 5,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# What is the dimension of X_train?. What does that mean?\n",
|
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "slide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"### Display Images\n",
|
|
|
|
"\n",
|
|
|
|
"Let's now display some of the images and see how they look\n",
|
|
|
|
"\n",
|
|
|
|
"We will be using `matplotlib` library for displaying the image"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 11,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": true,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"from matplotlib import pyplot\n",
|
|
|
|
"import matplotlib as mpl\n",
|
|
|
|
"%matplotlib inline"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 26,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": true,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# Displaying the first training data"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 4,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD7CAYAAABKWyniAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADnRJREFUeJzt3X2MVfWdx/HPV4kPgEEkyxCBBauxazYR0rXGDRpv02xL\n1iZIVUp9iLKEGAUkNj4VY2ZCNCmbKIEoRtEaqNW2S3Sxm2y1xEQ0SmsK7CJQ2bgOD7My4Aa0Y6KB\nne/+cY/jgJffucy5Dwe+71cy8c75zJ3z9ehnzr33dx/M3QUgltPaPQCA1qP4QEAUHwiI4gMBUXwg\nIIoPBNSy4pvZdDP7s5ntNLP7W7XfeplZt5n9h5ltNrM/lmCeZ82s18z+c9C20Wb2mpm9b2avmtmo\nks3XaWZ7zWxT9jW9jfNNMLPXzWybmW01s7uy7aU4hjXmW5htb8kxtFas45vZaZJ2SvqupP+R9K6k\n2e7+56bvvE5m9t+S/s7dD7Z7Fkkysysl9Ula4+6XZtuWSvpfd//n7I/naHd/oETzdUr6i7s/1o6Z\nBjOzcZLGufsWMxsp6U+SZkiaoxIcw8R8P1ILjmGrzviXS/ovd9/l7ocl/UrVf8kyMZXoro+7vyXp\n2D9CMyStzi6vlnRtS4ca5DjzSdXj2Hbuvs/dt2SX+yTtkDRBJTmGx5lvfBY3/Ri26n/08ZL2DPp+\nr776lywLl/R7M3vXzOa1e5jjGOvuvVL1fxxJY9s8Ty0LzGyLmT3Tzrsig5nZZElTJW2U1FG2Yzho\nvj9km5p+DEtzhiuBae7+LUn/KGl+dlO27Mr2fOuVkr7h7lMl7ZNUhpv8IyWtlbQoO7Mee8zaegxr\nzNeSY9iq4vdI+utB30/ItpWGu3+U/fOApJdVvXtSNr1m1iEN3Efc3+Z5juLuB/yrB41WSfp2O+cx\ns2GqluoX7r4u21yaY1hrvlYdw1YV/11JF5nZJDM7Q9JsSa+0aN+5zGx49pdXZjZC0vckvdfeqSRV\n7+sNvr/3iqTbssu3Slp37BVa7Kj5siJ96Ydq/zH8uaTt7r580LYyHcOvzdeqY9iSR/Wl6nKepOWq\n/rF51t1/1pId18HMLlD1LO+Shkn6ZbvnM7MXJFUkjZHUK6lT0r9K+hdJEyXtkjTL3Q+VaL7vqHpf\ntV9St6Tbv7w/3Yb5pknaIGmrqv9dXdJiSX+U9Bu1+Rgm5rtRLTiGLSs+gPLgwT0gIIoPBETxgYAo\nPhBQoeKX/YU3AGob8qP69b7wxsxYNgDaxN1rPu+/yBm/7hfeuPvAV2dn51Hfl+2L+U7d+co8WzPm\nSylS/JPhhTcAauDBPSCgYQWuW/cLb7q6ugYun3vuuQV22XyVSqXdIyQx39CVeTaptfMVeXDvdEnv\nq/rg3keqPgf6x+6+45if86HuA8DQmZn8OA/uDfmM7+7/Z2YLJL2mr154syPnagBKoOkv0uGMD7RH\n6ozPg3tAQBQfCIjiAwFRfCAgig8ERPGBgCg+EBDFBwKi+EBAFB8IiOIDAVF8ICCKDwRE8YGAKD4Q\nEMUHAqL4QEAUHwiI4gMBUXwgIIoPBETxgYAoPhBQkY/QArRnz55kvnz58mS+bNmyZH733Xcn80WL\nFiXziRMnJvOoOOMDAVF8ICCKDwRE8YGAKD4QEMUHAqL4QEBW5LPrzaxb0ieS+iUddvfLa/yMF9kH\n2qunpyeZT5kyJZkfOnSokeN8zejRo5P5gQMHmrr/MjMzubvVyoo+gadfUsXdDxb8PQBaqOhNfWvA\n7wDQYkVL65J+b2bvmtm8RgwEoPmK3tSf5u4fmdlfqfoHYIe7v3XsD3V1dQ1crlQqqlQqBXcLoIhC\nxXf3j7J/HjCzlyVdLilZfADtN+Sb+mY23MxGZpdHSPqepPcaNRiA5ilyxu+Q9LKZefZ7funurzVm\nLADNVGgdv64dsI5fart27UrmeY/H7N69O5mb1VxGHjBq1KhkfuaZZybz/fv3J/OdO3cm80mTJiXz\n008/PZmXWWodn6U4ICCKDwRE8YGAKD4QEMUHAqL4QEAUHwiIdfyT3OHDh5N53jr99OnTk3l3d3cy\nz/tvm7eOf/XVVyfzRx55JJlfeeWVyTxvvqeffjqZz507N5mXGev4AI5C8YGAKD4QEMUHAqL4QEAU\nHwiI4gMBFX3PPbTZvffem8wff/zxFk0yNG+88UYy/+yzz5L5zJkzk/lLL72UzDdv3pzMT1Wc8YGA\nKD4QEMUHAqL4QEAUHwiI4gMBUXwgINbxS27Pnj3J/Pnnn0/mRd8LIW+d/LrrrkvmN998czKfOHFi\nMr/kkkuS+f3335/M165dm8yjvlcEZ3wgIIoPBETxgYAoPhAQxQcCovhAQBQfCCj3ffXN7FlJP5DU\n6+6XZttGS/q1pEmSuiXNcvdPjnN93lc/oaenJ5lPmTIlmR86dKjQ/m+66aZkvmrVqmS+ffv2ZL5p\n06ZkPnv27GQ+fPjwZJ4n7/PtR4wYkcy3bduWzPOeh9BORd9X/zlJ3z9m2wOS1rv7NyW9LumnxUYE\n0Eq5xXf3tyQdPGbzDEmrs8urJV3b4LkANNFQ7+OPdfdeSXL3fZLGNm4kAM3WqOfqJ+/Ed3V1DVyu\nVCqqVCoN2i2AoRhq8XvNrMPde81snKT9qR8eXHwA7VfvTX3Lvr70iqTbssu3SlrXwJkANFlu8c3s\nBUlvS7rYzHab2RxJP5P0D2b2vqTvZt8DOEnkruMX3kHwdfyPP/44mS9ZsiSZP/HEE8m8o6MjmV9w\nwQXJ/NFHH03mV1xxRTIvu7x1fLOay9wD7rzzzmS+YsWKE56pVYqu4wM4xVB8ICCKDwRE8YGAKD4Q\nEMUHAqL4QEC8r35BR44cSeb33HNPMs97X/xRo0Yl81dffTWZX3TRRcn88OHDyTy6Dz/8sN0jNAVn\nfCAgig8ERPGBgCg+EBDFBwKi+EBAFB8IiHX8gnbv3p3M89bp82zcuDGZX3zxxYV+/9lnn13o+jg5\nccYHAqL4QEAUHwiI4gMBUXwgIIoPBETxgYBYxy9o/vz5yTzvMwVmzpyZzIuu00fX39+fzE87LX3u\nO1U/E4IzPhAQxQcCovhAQBQfCIjiAwFRfCAgig8ElLuOb2bPSvqBpF53vzTb1ilpnqT92Y8tdvff\nNW3KNtq8eXMy37BhQzLP+/z1G2644YRnQv3y1unz/vtcdtlljRynNOo54z8n6fs1tj/m7t/Kvk7J\n0gOnqtziu/tbkg7WiNJ/KgGUVpH7+AvMbIuZPWNm6c95AlAqQ32u/kpJS9zdzexhSY9Jmnu8H+7q\n6hq4XKlUVKlUhrhbAI0wpOK7+4FB366S9NvUzw8uPoD2q/emvmnQfXozGzco+6Gk9xo5FIDmqmc5\n7wVJFUljzGy3pE5J3zGzqZL6JXVLur2JMwJosNziu/uNNTY/14RZSunzzz9P5l988UUyP//885P5\nNddcc8IzRXLkyJFkvmLFikK///rrr0/mixcvLvT7y4pn7gEBUXwgIIoPBETxgYAoPhAQxQcCovhA\nQLyvfpOdddZZyXzkyJEtmqSc8tbpn3zyyWR+3333JfPJkycn8wcffDCZn3HGGcn8ZMUZHwiI4gMB\nUXwgIIoPBETxgYAoPhAQxQcCYh2/yW655ZZ2j9BWPT09yXzp0qXJfOXKlcl8zpw5yXzVqlXJPCrO\n+EBAFB8IiOIDAVF8ICCKDwRE8YGAKD4QkLl7c3dg5s3eRzO9/fbbyfyqq65K5nmvB//ggw9OdKRS\nefHFF5P5woULk/nBg7U+iPkrd911VzJftmxZMo/MzOTuNT/VmjM+EBDFBwKi+EBAFB8IiOIDAVF8\nICCKDwSU+3p8M5sgaY2kDkn9kla5+wozGy3p15ImSeqWNMvdP2nirG1hVnMZtO587969yXzJkiXJ\nfO7cucn8nHPOSebbtm1L5k899VQyf/PNN5N5d3d3Mr/wwguT+ezZs5N53jo+hqaeM/4RST9x97+V\n9PeS5pvZ30h6QNJ6d/+
|
|
|
|
"text/plain": [
|
|
|
|
"<matplotlib.figure.Figure at 0x121299e80>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"fig = pyplot.figure()\n",
|
|
|
|
"ax = fig.add_subplot(1,1,1)\n",
|
|
|
|
"imgplot = ax.imshow(X_train[1], cmap=mpl.cm.Greys)\n",
|
|
|
|
"imgplot.set_interpolation('nearest')\n",
|
|
|
|
"ax.xaxis.set_ticks_position('top')\n",
|
|
|
|
"ax.yaxis.set_ticks_position('left')\n",
|
|
|
|
"pyplot.show()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": true,
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "subslide"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# Let's now display the 11th record"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 52,
|
|
|
|
"metadata": {
|
|
|
|
"collapsed": false
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD7CAYAAABKWyniAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADbZJREFUeJzt3W+MVfWdx/HPpxKNLYpDXSARVleXrVpjSDfFbNiYW3Gp\n2TRBG2MrJmrdEGOga7Yh8c+TmWz2Ad0HJBpD4r82SKpb1sRFTKq2MZH4BzBtx4UWbBMcqy6M7CLI\nGB4U+e6DueDMOPO7M3PuP+b7fiU3nDnfe+/5cuAz55z7O+dcR4QA5PKlTjcAoP0IPpAQwQcSIvhA\nQgQfSIjgAwm1Lfi2b7C9z/YfbN/XruVOlu0B22/b/q3tXV3Qz5O2B23/94h5PbZftv2O7Zdsz+my\n/nptf2D7N/XHDR3sb6HtV2z/zvZu2/9cn98V63Cc/n5Yn9+Wdeh2jOPb/pKkP0haLul/JL0l6fsR\nsa/lC58k2/sl/W1EfNzpXiTJ9t9LGpL0VERcXZ/3Y0n/FxH/Xv/l2RMR93dRf72SjkXEhk70NJLt\nBZIWRES/7dmSfi1ppaQfqAvWYaG/76kN67BdW/ylkv4YEe9FxJ8l/YeG/5LdxOqiQ5+IeE3S2F9C\nKyVtqk9vknRjW5saYYL+pOH12HERcTAi+uvTQ5L2SlqoLlmHE/R3Ub3c8nXYrv/oF0l6f8TPH+jz\nv2S3CEm/tP2W7dWdbmYC8yJiUBr+jyNpXof7Gc9a2/22n+jkochIti+RtETSDknzu20djuhvZ31W\ny9dh12zhusCyiPiGpH+UtKa+K9vtuu18642SLo2IJZIOSuqGXf7Zkp6VdG99yzp2nXV0HY7TX1vW\nYbuC/6Gkvxzx88L6vK4REQfqfx6S9JyGD0+6zaDt+dLpY8SPOtzPKBFxKD7/0OhxSd/sZD+2Z2k4\nVJsjYmt9dtesw/H6a9c6bFfw35L017Yvtn22pO9Ler5Ny27I9pfrv3ll+yuSVkja09muJA0f6408\n3nte0p316TskbR37gjYb1V89SKd8V51fhz+R9PuIeGjEvG5ah1/or13rsC2f6kvDw3mSHtLwL5sn\nI2J9WxY8Cbb/SsNb+ZA0S9LPOt2f7acl1SR9VdKgpF5J/yXpPyUtkvSepFsi4kgX9fctDR+rnpQ0\nIOnuU8fTHehvmaTtknZr+N81JD0oaZekLerwOiz0t0ptWIdtCz6A7sGHe0BCBB9IiOADCRF8IKFK\nwe/2C28AjG/an+pP9sIb2wwbAB0SEeOe919liz/pC28i4vSjt7d31M/d9qC/mdtfN/fWiv5KqgT/\nTLjwBsA4+HAPSGhWhddO+sKbvr6+09MXXHBBhUW2Xq1W63QLRfQ3fd3cm9Te/qp8uHeWpHc0/OHe\nAQ2fA31rROwd87yY7jIATJ9txQQf7k17ix8Rn9leK+llfX7hzd4GLwPQBVp+kQ5bfKAzSlt8PtwD\nEiL4QEIEH0iI4AMJEXwgIYIPJETwgYQIPpAQwQcSIvhAQgQfSIjgAwkRfCAhgg8kRPCBhAg+kBDB\nBxIi+EBCBB9IiOADCRF8ICGCDyRE8IGEqnyFFrrA4OBgsf7SSy8V6+vXry/Wr7vuumJ96dKlxXoj\nt912W7F+1llnVXp/jI8tPpAQwQcSIvhAQgQfSIjgAwkRfCAhgg8k5CrfXW97QNJRSScl/TkivjCo\nazuqLCO7F154oVhftWpVsX7s2LFmttN0e/fuLdYvv/zyNnUy89hWRHi8WtUTeE5KqkXExxXfB0Ab\nVd3VdxPeA0CbVQ1tSPql7bdsr25GQwBar+qu/rKIOGD7LzT8C2BvRLw29kl9fX2np2u1mmq1WsXF\nAqiiUvAj4kD9z0O2n5O0VFIx+AA6b9q7+ra/bHt2fforklZI2tOsxgC0TpUt/nxJz9mO+vv8LCJe\nbk5bAFqp0jj+pBbAOH4lx48fL9Yvu+yyYv3AgQPNbKfp5s6dW6y/+uqrxfpVV13VzHZmlNI4PkNx\nQEIEH0iI4AMJEXwgIYIPJETwgYQIPpAQ99Xvcueee26x/uijjxbrt956a7H+6aefFuuXXnppsb5/\n//5ivZHDhw8X69u2bSvWGcefHrb4QEIEH0iI4AMJEXwgIYIPJETwgYQIPpAQ1+PPcMuWLSvW33jj\njWJ96dIvfFXCKLt27ZpyT1PRaJy/p6enpcs/k3E9PoBRCD6QEMEHEiL4QEIEH0iI4AMJEXwgIcbx\nZ7gdO3YU6+vWrSvWX3/99Wa2M2WDg4PF+rx589rUyZmHcXwAoxB8ICGCDyRE8IGECD6QEMEHEiL4\nQEINx/FtPynpO5IGI+Lq+rweST+XdLGkAUm3RMTRCV7POH4XGxoaKtavv/76Yn3nzp3NbOcLVq9e\nXaw/9thjLV3+mazqOP5PJX17zLz7Jf0qIr4m6RVJD1RrEUA7NQx+RLwm6eMxs1dK2lSf3iTpxib3\nBaCFpnuMPy8iBiUpIg5K4rxJ4AzSrO/OKx7E9/X1nZ6u1Wqq1WpNWiyA6Zhu8Adtz4+IQdsLJH1U\nevLI4APovMnu6rv+OOV5SXfWp++QtLWJPQFosYbBt/20pDck/Y3tP9n+gaT1kv7B9juSltd/BnCG\naLirHxGrJiiVB3jRFbZv316sNxqHb/V98xtZvnx5R5c/U3HmHpAQwQcSIvhAQgQfSIjgAwkRfCAh\ngg8kxH31u9yhQ4eK9RUrVhTre/bsKdZPnDgx5Z7a6fDhw8V6T09Pmzo583BffQCjEHwgIYIPJETw\ngYQIPpAQwQcSIvhAQs265x5a5N133y3W9+3bV6x3+zh9Iw8//HCx3tvb26ZOZha2+EBCBB9IiOAD\nCRF8ICGCDyRE8IGECD6QEOP4XW7p0qXF+ubNm4v122+/vVg/fvz4lHtqpw8//LDTLcxIbPGBhAg+\nkBDBBxIi+EBCBB9IiOADCRF8IKGG4/i2n5T0HUmDEXF1fV6vpNWSPqo/7cGIeLFlXWJCN998c7G+\nePHiYv2TTz6ptPzPPvusWL/pppuK9SNHjlRaPqZnMlv8n0r69jjzN0TEN+oPQg+cQRoGPyJek/Tx\nOKVxv6EDQPercoy/1na/7Sdsz2laRwBabrrn6m+U9K8REbb/TdIGSf800ZP7+vpOT9dqNdVqtWku\nFkAzTCv4ETHymxwfl7St9PyRwQfQeZPd1bdGHNPbXjCi9l1J5a9kBdBVJjOc97SkmqSv2v6TpF5J\n37K9RNJJSQOS7m5hjwCazK3+7nrb0eploHMa/dtu3LixWF+7dm2xfsUVVxTrb775ZrE+Z07ez51t\nKyLGHX3jzD0gIYIPJETwgYQIPpAQwQcSIvhAQgQfSIj76qOSRtfjNxqnb+Scc84p1m0uEp0OtvhA\nQgQfSIjgAwkRfCAhgg8kRPCBhAg+kBDj+Khkw4YNLX3/devWFevnn39+S5c/U7HFBxIi+EBCBB9I\niOADCRF8ICGCDyRE8IGEuK9+A8ePHy/W77nnnmL9rrvuKtavvfbaKffUTkNDQ8X6okWLivUjR45U\nWv7hw4eL9Z6enkrvP5NxX30AoxB8ICGCDyRE8IGECD6QEMEHEiL4QEINr8e3vVDSU5LmSzop6fGI\neNh2j6SfS7pY0oCkWyLiaAt77Yj77ruvWN+0aVOx3t/fX6xv2bKlWL/wwguL9blz5xbr77//frE+\nMDBQrD/wwAPFetVx+vXr1xfr5513XqX3x/gms8U/IelHEfF1SX8naY3tyyXdL+lXEfE1Sa9IKv8P\nAdA1GgY/Ig5GRH99ekjSXkkLJa2UdGpzt0nSja1qEkBzTekY3/YlkpZI2iFpfkQMSsO/HCTNa3Zz\nAFpj0vfcsz1b0rOS7o2IIdtjT8Cf8IT8vr6+09O1Wk21Wm1qXQJoqkkF3/YsDYd+c0Rsrc8etD0/\nIgZtL5D00USvHxl8AJ032V39n0j6fUQ8NGLe85LurE/fIWnr2BcB6E6TGc5bJuk2Sbtt/1bDu/QP\nSvqxpC2275L0nqRbWtk
|
|
|
|
"text/plain": [
|
|
|
|
"<matplotlib.figure.Figure at 0x124541dd8>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": []
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"celltoolbar": "Slideshow",
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.4.3"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 0
|
|
|
|
}
|