data-science-ipython-notebooks/python-data/files.ipynb

143 lines
3.4 KiB
Plaintext
Raw Normal View History

{
2015-05-14 18:55:23 +08:00
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<small><i>This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/data-science-ipython-notebooks).</i></small>"
]
},
2015-05-14 18:55:23 +08:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Files\n",
"\n",
"* Read a File\n",
"* Write a File\n",
"* Read and Write UTF-8"
]
},
{
2015-05-14 18:55:23 +08:00
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read a File\n",
"\n",
"Open a file in read-only mode.<br\\>\n",
"Iterate over the file lines. rstrip removes the EOL markers.<br\\>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
2015-05-14 18:55:23 +08:00
"name": "stdout",
"output_type": "stream",
"text": [
"class TypeUtil:\n",
"\n",
2015-05-14 18:55:23 +08:00
" @classmethod\n",
" def is_iterable(cls, obj):\n",
" \"\"\"Determines if obj is iterable.\n",
"\n",
2015-05-14 18:55:23 +08:00
" Useful when writing functions that can accept multiple types of\n",
" input (list, tuple, ndarray, iterator). Pairs well with\n",
" convert_to_list.\n",
" \"\"\"\n",
" try:\n",
" iter(obj)\n",
" return True\n",
" except TypeError:\n",
" return False\n",
"\n",
2015-05-14 18:55:23 +08:00
" @classmethod\n",
" def convert_to_list(cls, obj):\n",
" \"\"\"Converts obj to a list if it is not a list and it is iterable,\n",
" else returns the original obj.\n",
" \"\"\"\n",
" if not isinstance(obj, list) and cls.is_iterable(obj):\n",
" obj = list(obj)\n",
" return obj\n"
2015-02-17 06:01:10 +08:00
]
}
],
2015-05-14 18:55:23 +08:00
"source": [
"old_file_path = 'type_util.py'\n",
"with open(old_file_path, 'r') as old_file:\n",
" for line in old_file:\n",
" print(line.rstrip())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write to a file\n",
"\n",
"Create a new file overwriting any previous file with the same name, write text, then close the file:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"new_file_path = 'hello_world.txt'\n",
"with open(new_file_path, 'w') as new_file:\n",
" new_file.write('hello world!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read and Write UTF-8"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import codecs\n",
"with codecs.open(\"hello_world_new.txt\", \"a\", \"utf-8\") as new_file:\n",
" with codecs.open(\"hello_world.txt\", \"r\", \"utf-8\") as old_file: \n",
" for line in old_file:\n",
" new_file.write(line + '\\n')"
]
}
2015-05-14 18:55:23 +08:00
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
2015-05-14 18:55:23 +08:00
}
},
"nbformat": 4,
"nbformat_minor": 0
}