2017-08-26 08:25:13 -04:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
2017-08-26 08:47:27 -04:00
" Credits: Forked from [deep-learning-keras-tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio "
2017-08-26 08:25:13 -04:00
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Practical Deep Learning "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" Constructing and training your own ConvNet from scratch can be Hard and a long task. \n " ,
" \n " ,
" A common trick used in Deep Learning is to use a **pre-trained** model and finetune it to the specific data it will be used for. "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" ## Famous Models with Keras \n "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" This notebook contains code and reference for the following Keras models (gathered from [https://github.com/fchollet/deep-learning-models]()) \n " ,
" \n " ,
" - VGG16 \n " ,
" - VGG19 \n " ,
" - ResNet50 \n " ,
" - Inception v3 \n "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " skip "
}
} ,
" source " : [
" ## References \n " ,
" \n " ,
" - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) - please cite this paper if you use the VGG models in your work. \n " ,
" - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) - please cite this paper if you use the ResNet model in your work. \n " ,
" - [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567) - please cite this paper if you use the Inception v3 model in your work. \n "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at `~/.keras/keras.json`. \n " ,
" \n " ,
" For instance, if you have set `image_dim_ordering=tf`, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, \" Width-Height-Depth \" . "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Keras Configuration File "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 3 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " - "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" { \r \n " ,
" \" image_dim_ordering \" : \" th \" , \r \n " ,
" \" floatx \" : \" float32 \" , \r \n " ,
" \" epsilon \" : 1e-07, \r \n " ,
" \" backend \" : \" theano \" \r \n " ,
" } "
]
}
] ,
" source " : [
" !cat ~/.keras/keras.json "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 4 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" { \r \n " ,
" \" image_dim_ordering \" : \" th \" , \r \n " ,
" \" floatx \" : \" float32 \" , \r \n " ,
" \" epsilon \" : 1e-07, \r \n " ,
" \" backend \" : \" tensorflow \" \r \n " ,
" } "
]
}
] ,
" source " : [
" !sed -i ' s/theano/tensorflow/g ' ~/.keras/keras.json \n " ,
" !cat ~/.keras/keras.json "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 5 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stderr " ,
" output_type " : " stream " ,
" text " : [
" Using TensorFlow backend. \n "
]
}
] ,
" source " : [
" import keras "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 7 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [
{
" name " : " stderr " ,
" output_type " : " stream " ,
" text " : [
" Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0 % o f memory, cuDNN 4007) \n "
]
}
] ,
" source " : [
" import theano "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 8 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" { \r \n " ,
" \" image_dim_ordering \" : \" th \" , \r \n " ,
" \" backend \" : \" theano \" , \r \n " ,
" \" floatx \" : \" float32 \" , \r \n " ,
" \" epsilon \" : 1e-07 \r \n " ,
" } "
]
}
] ,
" source " : [
" !sed -i ' s/tensorflow/theano/g ' ~/.keras/keras.json \n " ,
" !cat ~/.keras/keras.json "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stderr " ,
" output_type " : " stream " ,
" text " : [
" Using Theano backend. \n " ,
" Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0 % o f memory, cuDNN 4007) \n "
]
}
] ,
" source " : [
" import keras "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " skip "
}
} ,
" outputs " : [
{
" name " : " stderr " ,
" output_type " : " stream " ,
" text " : [
" Using Theano backend. \n " ,
" Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0 % o f memory, cuDNN 4007) \n "
]
}
] ,
" source " : [
" # %lo ad deep_learning_models/imagenet_utils.py \n " ,
" import numpy as np \n " ,
" import json \n " ,
" \n " ,
" from keras.utils.data_utils import get_file \n " ,
" from keras import backend as K \n " ,
" \n " ,
" CLASS_INDEX = None \n " ,
" CLASS_INDEX_PATH = ' https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json ' \n " ,
" \n " ,
" \n " ,
" def preprocess_input(x, dim_ordering= ' default ' ): \n " ,
" if dim_ordering == ' default ' : \n " ,
" dim_ordering = K.image_dim_ordering() \n " ,
" assert dim_ordering in { ' tf ' , ' th ' } \n " ,
" \n " ,
" if dim_ordering == ' th ' : \n " ,
" x[:, 0, :, :] -= 103.939 \n " ,
" x[:, 1, :, :] -= 116.779 \n " ,
" x[:, 2, :, :] -= 123.68 \n " ,
" # ' RGB ' -> ' BGR ' \n " ,
" x = x[:, ::-1, :, :] \n " ,
" else: \n " ,
" x[:, :, :, 0] -= 103.939 \n " ,
" x[:, :, :, 1] -= 116.779 \n " ,
" x[:, :, :, 2] -= 123.68 \n " ,
" # ' RGB ' -> ' BGR ' \n " ,
" x = x[:, :, :, ::-1] \n " ,
" return x \n " ,
" \n " ,
" \n " ,
" def decode_predictions(preds): \n " ,
" global CLASS_INDEX \n " ,
" assert len(preds.shape) == 2 and preds.shape[1] == 1000 \n " ,
" if CLASS_INDEX is None: \n " ,
" fpath = get_file( ' imagenet_class_index.json ' , \n " ,
" CLASS_INDEX_PATH, \n " ,
" cache_subdir= ' models ' ) \n " ,
" CLASS_INDEX = json.load(open(fpath)) \n " ,
" indices = np.argmax(preds, axis=-1) \n " ,
" results = [] \n " ,
" for i in indices: \n " ,
" results.append(CLASS_INDEX[str(i)]) \n " ,
" return results \n "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 4 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " skip "
}
} ,
" outputs " : [ ] ,
" source " : [
" IMAGENET_FOLDER = ' imgs/imagenet ' #in the repo "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # VGG16 "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 5 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" # %lo ad deep_learning_models/vgg16.py \n " ,
" ' ' ' VGG16 model for Keras. \n " ,
" \n " ,
" # Reference: \n " ,
" \n " ,
" - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) \n " ,
" \n " ,
" ' ' ' \n " ,
" from __future__ import print_function \n " ,
" \n " ,
" import numpy as np \n " ,
" import warnings \n " ,
" \n " ,
" from keras.models import Model \n " ,
" from keras.layers import Flatten, Dense, Input \n " ,
" from keras.layers import Convolution2D, MaxPooling2D \n " ,
" from keras.preprocessing import image \n " ,
" from keras.utils.layer_utils import convert_all_kernels_in_model \n " ,
" from keras.utils.data_utils import get_file \n " ,
" from keras import backend as K \n " ,
" \n " ,
" TH_WEIGHTS_PATH = ' https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels.h5 ' \n " ,
" TF_WEIGHTS_PATH = ' https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5 ' \n " ,
" TH_WEIGHTS_PATH_NO_TOP = ' https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels_notop.h5 ' \n " ,
" TF_WEIGHTS_PATH_NO_TOP = ' https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 ' \n " ,
" \n " ,
" \n " ,
" def VGG16(include_top=True, weights= ' imagenet ' , \n " ,
" input_tensor=None): \n " ,
" ' ' ' Instantiate the VGG16 architecture, \n " ,
" optionally loading weights pre-trained \n " ,
" on ImageNet. Note that when using TensorFlow, \n " ,
" for best performance you should set \n " ,
" `image_dim_ordering= \" tf \" ` in your Keras config \n " ,
" at ~/.keras/keras.json. \n " ,
" \n " ,
" The model and the weights are compatible with both \n " ,
" TensorFlow and Theano. The dimension ordering \n " ,
" convention used by the model is the one \n " ,
" specified in your Keras config file. \n " ,
" \n " ,
" # Arguments \n " ,
" include_top: whether to include the 3 fully-connected \n " ,
" layers at the top of the network. \n " ,
" weights: one of `None` (random initialization) \n " ,
" or \" imagenet \" (pre-training on ImageNet). \n " ,
" input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) \n " ,
" to use as image input for the model. \n " ,
" \n " ,
" # Returns \n " ,
" A Keras model instance. \n " ,
" ' ' ' \n " ,
" if weights not in { ' imagenet ' , None}: \n " ,
" raise ValueError( ' The `weights` argument should be either ' \n " ,
" ' `None` (random initialization) or `imagenet` ' \n " ,
" ' (pre-training on ImageNet). ' ) \n " ,
" # Determine proper input shape \n " ,
" if K.image_dim_ordering() == ' th ' : \n " ,
" if include_top: \n " ,
" input_shape = (3, 224, 224) \n " ,
" else: \n " ,
" input_shape = (3, None, None) \n " ,
" else: \n " ,
" if include_top: \n " ,
" input_shape = (224, 224, 3) \n " ,
" else: \n " ,
" input_shape = (None, None, 3) \n " ,
" \n " ,
" if input_tensor is None: \n " ,
" img_input = Input(shape=input_shape) \n " ,
" else: \n " ,
" if not K.is_keras_tensor(input_tensor): \n " ,
" img_input = Input(tensor=input_tensor) \n " ,
" else: \n " ,
" img_input = input_tensor \n " ,
" # Block 1 \n " ,
" x = Convolution2D(64, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block1_conv1 ' )(img_input) \n " ,
" x = Convolution2D(64, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block1_conv2 ' )(x) \n " ,
" x = MaxPooling2D((2, 2), strides=(2, 2), name= ' block1_pool ' )(x) \n " ,
" \n " ,
" # Block 2 \n " ,
" x = Convolution2D(128, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block2_conv1 ' )(x) \n " ,
" x = Convolution2D(128, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block2_conv2 ' )(x) \n " ,
" x = MaxPooling2D((2, 2), strides=(2, 2), name= ' block2_pool ' )(x) \n " ,
" \n " ,
" # Block 3 \n " ,
" x = Convolution2D(256, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block3_conv1 ' )(x) \n " ,
" x = Convolution2D(256, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block3_conv2 ' )(x) \n " ,
" x = Convolution2D(256, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block3_conv3 ' )(x) \n " ,
" x = MaxPooling2D((2, 2), strides=(2, 2), name= ' block3_pool ' )(x) \n " ,
" \n " ,
" # Block 4 \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block4_conv1 ' )(x) \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block4_conv2 ' )(x) \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block4_conv3 ' )(x) \n " ,
" x = MaxPooling2D((2, 2), strides=(2, 2), name= ' block4_pool ' )(x) \n " ,
" \n " ,
" # Block 5 \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block5_conv1 ' )(x) \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block5_conv2 ' )(x) \n " ,
" x = Convolution2D(512, 3, 3, activation= ' relu ' , border_mode= ' same ' , name= ' block5_conv3 ' )(x) \n " ,
" x = MaxPooling2D((2, 2), strides=(2, 2), name= ' block5_pool ' )(x) \n " ,
" \n " ,
" if include_top: \n " ,
" # Classification block \n " ,
" x = Flatten(name= ' flatten ' )(x) \n " ,
" x = Dense(4096, activation= ' relu ' , name= ' fc1 ' )(x) \n " ,
" x = Dense(4096, activation= ' relu ' , name= ' fc2 ' )(x) \n " ,
" x = Dense(1000, activation= ' softmax ' , name= ' predictions ' )(x) \n " ,
" \n " ,
" # Create model \n " ,
" model = Model(img_input, x) \n " ,
" \n " ,
" # load weights \n " ,
" if weights == ' imagenet ' : \n " ,
" print( ' K.image_dim_ordering: ' , K.image_dim_ordering()) \n " ,
" if K.image_dim_ordering() == ' th ' : \n " ,
" if include_top: \n " ,
" weights_path = get_file( ' vgg16_weights_th_dim_ordering_th_kernels.h5 ' , \n " ,
" TH_WEIGHTS_PATH, \n " ,
" cache_subdir= ' models ' ) \n " ,
" else: \n " ,
" weights_path = get_file( ' vgg16_weights_th_dim_ordering_th_kernels_notop.h5 ' , \n " ,
" TH_WEIGHTS_PATH_NO_TOP, \n " ,
" cache_subdir= ' models ' ) \n " ,
" model.load_weights(weights_path) \n " ,
" if K.backend() == ' tensorflow ' : \n " ,
" warnings.warn( ' You are using the TensorFlow backend, yet you ' \n " ,
" ' are using the Theano ' \n " ,
" ' image dimension ordering convention ' \n " ,
" ' (`image_dim_ordering= \" th \" `). ' \n " ,
" ' For best performance, set ' \n " ,
" ' `image_dim_ordering= \" tf \" ` in ' \n " ,
" ' your Keras config ' \n " ,
" ' at ~/.keras/keras.json. ' ) \n " ,
" convert_all_kernels_in_model(model) \n " ,
" else: \n " ,
" if include_top: \n " ,
" weights_path = get_file( ' vgg16_weights_tf_dim_ordering_tf_kernels.h5 ' , \n " ,
" TF_WEIGHTS_PATH, \n " ,
" cache_subdir= ' models ' ) \n " ,
" else: \n " ,
" weights_path = get_file( ' vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 ' , \n " ,
" TF_WEIGHTS_PATH_NO_TOP, \n " ,
" cache_subdir= ' models ' ) \n " ,
" model.load_weights(weights_path) \n " ,
" if K.backend() == ' theano ' : \n " ,
" convert_all_kernels_in_model(model) \n " ,
" return model "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 7 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" K.image_dim_ordering: th \n " ,
" Input image shape: (1, 3, 224, 224) \n " ,
" Predicted: [[ ' n07745940 ' , ' strawberry ' ]] \n "
]
}
] ,
" source " : [
" import os \n " ,
" \n " ,
" model = VGG16(include_top=True, weights= ' imagenet ' ) \n " ,
" \n " ,
" img_path = os.path.join(IMAGENET_FOLDER, ' strawberry_1157.jpeg ' ) \n " ,
" img = image.load_img(img_path, target_size=(224, 224)) \n " ,
" x = image.img_to_array(img) \n " ,
" x = np.expand_dims(x, axis=0) \n " ,
" x = preprocess_input(x) \n " ,
" print( ' Input image shape: ' , x.shape) \n " ,
" \n " ,
" preds = model.predict(x) \n " ,
" print( ' Predicted: ' , decode_predictions(preds)) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Fine Tuning of a Pre-Trained Model "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ```python \n " ,
" def VGG16_FT(weights_path = None, \n " ,
" img_width = 224, img_height = 224, \n " ,
" f_type = None, n_labels = None ): \n " ,
" \n " ,
" \" \" \" Fine Tuning of a VGG16 based Net \" \" \" \n " ,
" \n " ,
" # VGG16 Up to the layer before the last! \n " ,
" model = Sequential() \n " ,
" model.add(ZeroPadding2D((1, 1), \n " ,
" input_shape=(3, \n " ,
" img_width, img_height))) \n " ,
" \n " ,
" model.add(Convolution2D(64, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv1_1 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(64, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv1_2 ' )) \n " ,
" model.add(MaxPooling2D((2, 2), strides=(2, 2))) \n " ,
" \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(128, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv2_1 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(128, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv2_2 ' )) \n " ,
" model.add(MaxPooling2D((2, 2), strides=(2, 2))) \n " ,
" \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(256, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv3_1 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(256, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv3_2 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(256, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv3_3 ' )) \n " ,
" model.add(MaxPooling2D((2, 2), strides=(2, 2))) \n " ,
" \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv4_1 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv4_2 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv4_3 ' )) \n " ,
" model.add(MaxPooling2D((2, 2), strides=(2, 2))) \n " ,
" \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv5_1 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv5_2 ' )) \n " ,
" model.add(ZeroPadding2D((1, 1))) \n " ,
" model.add(Convolution2D(512, 3, 3, activation= ' relu ' , \n " ,
" name= ' conv5_3 ' )) \n " ,
" model.add(MaxPooling2D((2, 2), strides=(2, 2))) \n " ,
" model.add(Flatten()) \n " ,
" \n " ,
" # Plugging new Layers \n " ,
" model.add(Dense(768, activation= ' sigmoid ' )) \n " ,
" model.add(Dropout(0.0)) \n " ,
" model.add(Dense(768, activation= ' sigmoid ' )) \n " ,
" model.add(Dropout(0.0)) \n " ,
" \n " ,
" last_layer = Dense(n_labels, activation= ' sigmoid ' ) \n " ,
" loss = ' categorical_crossentropy ' \n " ,
" optimizer = optimizers.Adam(lr=1e-4, epsilon=1e-08) \n " ,
" batch_size = 128 \n " ,
" \n " ,
" assert os.path.exists(weights_path), ' Model weights not found (see \" weights_path \" variable in script). ' \n " ,
" #model.load_weights(weights_path) \n " ,
" f = h5py.File(weights_path) \n " ,
" for k in range(len(f.attrs[ ' layer_names ' ])): \n " ,
" g = f[f.attrs[ ' layer_names ' ][k]] \n " ,
" weights = [g[g.attrs[ ' weight_names ' ][p]] \n " ,
" for p in range(len(g.attrs[ ' weight_names ' ]))] \n " ,
" if k >= len(model.layers): \n " ,
" break \n " ,
" else: \n " ,
" model.layers[k].set_weights(weights) \n " ,
" f.close() \n " ,
" print( ' Model loaded. ' ) \n " ,
" \n " ,
" model.add(last_layer) \n " ,
" \n " ,
" # set the first 25 layers (up to the last conv block) \n " ,
" # to non-trainable (weights will not be updated) \n " ,
" for layer in model.layers[:25]: \n " ,
" layer.trainable = False \n " ,
" \n " ,
" # compile the model with a SGD/momentum optimizer \n " ,
" # and a very slow learning rate. \n " ,
" model.compile(loss=loss, \n " ,
" optimizer=optimizer, \n " ,
" metrics=[ ' accuracy ' ]) \n " ,
" return model, batch_size \n " ,
" \n " ,
" ``` "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Hands On: \n " ,
" \n " ,
" ### Try to do the same with other models "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" collapsed " : true
} ,
" outputs " : [ ] ,
" source " : [
" %lo ad deep_learning_models/vgg19.py "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : null ,
" metadata " : {
" collapsed " : true
} ,
" outputs " : [ ] ,
" source " : [
" %lo ad deep_learning_models/resnet50.py "
]
}
] ,
" metadata " : {
" celltoolbar " : " Slideshow " ,
" kernelspec " : {
" display_name " : " Python 3 " ,
" language " : " python " ,
" name " : " python3 "
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
" version " : 3
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
" pygments_lexer " : " ipython3 " ,
" version " : " 3.4.3 "
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}