2017-08-26 08:25:13 -04:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
2017-08-26 08:47:27 -04:00
" Credits: Forked from [deep-learning-keras-tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio "
2017-08-26 08:25:13 -04:00
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Convolution Nets for MNIST "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" Deep Learning models can take quite a bit of time to run, particularly if GPU isn ' t used. \n " ,
" \n " ,
" In the interest of time, you could sample a subset of observations (e.g. $1000$) that are a particular number of your choice (e.g. $6$) and $1000$ observations that aren ' t that particular number (i.e. $ \\ neq 6$). \n " ,
" \n " ,
" We will build a model using that and see how it performs on the test dataset "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stderr " ,
" output_type " : " stream " ,
" text " : [
" Using Theano backend. \n " ,
" Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0 % o f memory, cuDNN 4007) \n "
]
}
] ,
" source " : [
" #Import the required libraries \n " ,
" import numpy as np \n " ,
" np.random.seed(1338) \n " ,
" \n " ,
" from keras.datasets import mnist "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 2 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [ ] ,
" source " : [
" from keras.models import Sequential "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 3 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [ ] ,
" source " : [
" from keras.layers.core import Dense, Dropout, Activation, Flatten "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 5 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [ ] ,
" source " : [
" from keras.layers.convolutional import Convolution2D \n " ,
" from keras.layers.pooling import MaxPooling2D "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 6 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [ ] ,
" source " : [
" from keras.utils import np_utils \n " ,
" from keras.optimizers import SGD "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ## Loading Data "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 22 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " - "
}
} ,
" outputs " : [ ] ,
" source " : [
" path_to_dataset = \" euroscipy_2016_dl-keras/data/mnist.pkl.gz \" \n " ,
" \n " ,
" #Load the training and testing data \n " ,
" (X_train, y_train), (X_test, y_test) = mnist.load_data(path_to_dataset) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 23 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " skip "
}
} ,
" outputs " : [ ] ,
" source " : [
" X_test_orig = X_test "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ## Data Preparation "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 24 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " - "
}
} ,
" outputs " : [ ] ,
" source " : [
" img_rows, img_cols = 28, 28 \n " ,
" \n " ,
" X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) \n " ,
" X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) \n " ,
" \n " ,
" X_train = X_train.astype( ' float32 ' ) \n " ,
" X_test = X_test.astype( ' float32 ' ) \n " ,
" \n " ,
" X_train /= 255 \n " ,
" X_test /= 255 "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 25 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" # Seed for reproducibilty \n " ,
" np.random.seed(1338) \n " ,
" \n " ,
" # Test data \n " ,
" X_test = X_test.copy() \n " ,
" Y = y_test.copy() \n " ,
" \n " ,
" # Converting the output to binary classification(Six=1,Not Six=0) \n " ,
" Y_test = Y == 6 \n " ,
" Y_test = Y_test.astype(int) \n " ,
" \n " ,
" # Selecting the 5918 examples where the output is 6 \n " ,
" X_six = X_train[y_train == 6].copy() \n " ,
" Y_six = y_train[y_train == 6].copy() \n " ,
" \n " ,
" # Selecting the examples where the output is not 6 \n " ,
" X_not_six = X_train[y_train != 6].copy() \n " ,
" Y_not_six = y_train[y_train != 6].copy() \n " ,
" \n " ,
" # Selecting 6000 random examples from the data that \n " ,
" # only contains the data where the output is not 6 \n " ,
" random_rows = np.random.randint(0,X_six.shape[0],6000) \n " ,
" X_not_six = X_not_six[random_rows] \n " ,
" Y_not_six = Y_not_six[random_rows] "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 26 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" # Appending the data with output as 6 and data with output as <> 6 \n " ,
" X_train = np.append(X_six,X_not_six) \n " ,
" \n " ,
" # Reshaping the appended data to appropraite form \n " ,
" X_train = X_train.reshape(X_six.shape[0] + X_not_six.shape[0], \n " ,
" 1, img_rows, img_cols) \n " ,
" \n " ,
" # Appending the labels and converting the labels to \n " ,
" # binary classification(Six=1,Not Six=0) \n " ,
" Y_labels = np.append(Y_six,Y_not_six) \n " ,
" Y_train = Y_labels == 6 \n " ,
" Y_train = Y_train.astype(int) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 36 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" (11918, 1, 28, 28) (11918,) (10000, 1, 28, 28) (10000, 2) \n "
]
}
] ,
" source " : [
" print(X_train.shape, Y_labels.shape, X_test.shape, Y_test.shape) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 28 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " fragment "
}
} ,
" outputs " : [ ] ,
" source " : [
" # Converting the classes to its binary categorical form \n " ,
" nb_classes = 2 \n " ,
" Y_train = np_utils.to_categorical(Y_train, nb_classes) \n " ,
" Y_test = np_utils.to_categorical(Y_test, nb_classes) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # A simple CNN "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 29 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" #Initializing the values for the convolution neural network \n " ,
" nb_epoch = 2 \n " ,
" batch_size = 128 \n " ,
" # number of convolutional filters to use \n " ,
" nb_filters = 32 \n " ,
" # size of pooling area for max pooling \n " ,
" nb_pool = 2 \n " ,
" # convolution kernel size \n " ,
" nb_conv = 3 \n " ,
" \n " ,
" sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Step 1: Model Definition "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 30 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" model = Sequential() \n " ,
" \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv, \n " ,
" border_mode= ' valid ' , \n " ,
" input_shape=(1, img_rows, img_cols))) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" \n " ,
" model.add(Flatten()) \n " ,
" model.add(Dense(nb_classes)) \n " ,
" model.add(Activation( ' softmax ' )) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Step 2: Compile "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 31 ,
" metadata " : {
" collapsed " : true
} ,
" outputs " : [ ] ,
" source " : [
" model.compile(loss= ' categorical_crossentropy ' , \n " ,
" optimizer= ' sgd ' , \n " ,
" metrics=[ ' accuracy ' ]) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Step 3: Fit "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 32 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Train on 11918 samples, validate on 10000 samples \n " ,
" Epoch 1/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.2890 - acc: 0.9326 - val_loss: 0.1251 - val_acc: 0.9722 \n " ,
" Epoch 2/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.1341 - acc: 0.9612 - val_loss: 0.1298 - val_acc: 0.9599 \n "
]
} ,
{
" data " : {
" text/plain " : [
" <keras.callbacks.History at 0x7f6ccb68f630> "
]
} ,
" execution_count " : 32 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" model.fit(X_train, Y_train, batch_size=batch_size, \n " ,
" nb_epoch=nb_epoch,verbose=1, \n " ,
" validation_data=(X_test, Y_test)) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Step 4: Evaluate "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 33 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Test score: 0.129807630396 \n " ,
" Test accuracy: 0.9599 \n "
]
}
] ,
" source " : [
" # Evaluating the model on the test data \n " ,
" score, accuracy = model.evaluate(X_test, Y_test, verbose=0) \n " ,
" print( ' Test score: ' , score) \n " ,
" print( ' Test accuracy: ' , accuracy) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ### Let ' s plot our model Predictions! "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 34 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " skip "
}
} ,
" outputs " : [ ] ,
" source " : [
" import matplotlib.pyplot as plt \n " ,
" \n " ,
" % matplotlib inline "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 57 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAA50AAABVCAYAAADKf4AOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4VmW5/z+PgMIJA4UABYckPZoYaJSWeEmWph3MMicQ \n TpAoTimCx711b3NhbGWTECAKKhYdUBQnNAtSK0xIJcejRqeccjghDj9NTAXx+f1x32tP7I17eOf3 \n +7mufT3rfdaz1nvfe71reu4pxBgRQgghhBBCCCGywTb5FkAIIYQQQgghROmil04hhBBCCCGEEFkj \n Ky+d3bp1WxdCiG3969at27psyJNtpK/0lc7St5iQvtJXOkvfYkL6St9S0rnc9E0J2YjpDCHE9uw3 \n hECMMWRcoCwjfVu9XVnp69uWlc7StziQvq3erqz09W3LSmfpWxxI31ZvV1b6+rZFp3O56Zsi91oh \n hBBCCCGEEFlDL51CCCGEEEIIIbJGzl46V6xYwd57781ee+1FbW1trr42b5xyyin07duXL3zhC/kW \n JWeU2zGWvqVNuekL5aez9C1tpG9po+es0j/G0rfEiDFm/M92W8/mzZvjwIED44svvhg3btwYBw8e \n HNeuXRub4ttlRaZs/jXVN8YYH3jggfj444/H/fbbb4t1pahva45xuelbSjpL39LWt7U6S9/i+NM1 \n S/qWur4x6jlL16zi1bnc9E3/cmLpXLNmDXvuuSe77bYbXbp04aSTTuLOO+/MxVfnjWHDhrHDDjvk \n W4ycUW7HWPpK31Kj3HSWvtK3lCg3fUHPWaV+jKVv6embk5fOV199lV122aXu84ABA3j11Vdz8dUi \n R5TbMZa+0rfUKDedpa/0LSXKTd9ypNyOsfQtPX1z8tLppuRGhFCU2X5FC5TbMZa+0rfUKDedpa/0 \n LSXKTd9ypNyOsfQtPX1z8tI5YMAAXnrppbrPr7zyCjvvvHMuvlrkiHI7xtJX+pYa5aaz9JW+pUS5 \n 6VuOlNsxlr4lqG8uAmQ/+uijuuDYDz/8MA4ePDj++c9/Lpng2Kb6przwwgtx0KBBza4rNX1bc4zL \n Td9S0ln6lra+rdVZ+hbHn65Z0rfU9U3Rc5auWcWoc7npm/51zsqbbBM6derE3LlzOeKII/j44485 \n 5ZRT2GeffZodG0KypX25QIgxabWde9SoUaxcuZI333yTXXfdlSlTpjBu3LgtxpWKvq09xuWmL5SG \n ztK3tPUFncPSt55S0Fn6lra+oOcsXbPqKQWdy0Hf4G/cGSWEENuzX/NdviTj8mSKlv6R0rd1lJu+ \n vi3lpLP0LSykryF9W0+56Sx9Cwvpa0jf1lOMOpebvik5iekUQgghhBBCCFGe6KVTCCGEEEIIIUTW \n yElMp2g7J8TPArALLwNwxcsXA5DsWj/mG/EAAI56bwUAG7pflUMJhRBCCCGKld0BiBMsDrT2Guut \n eBzC/oXrvihEsSJLpxBCCCGEEEKIrCFLZ4ERX5sCQG2TMNxab7s16FsdHgPg3aF9AAikQclJ1uQr \n CPolAExdZ/+ke+NyAO4PD+VLogxhlusH4pS6Y1txrq0Js8vk2AohSoyjYdgXm1+16mEAkni7tc/4 \n ne50YFWSdclEC5yfWHvFTGv3nsTotdcBsGj2aQCMOffaRpss/q9TfZskBwJ2lN0BeCBeCcBMf97q \n 4mvPH/Jj4KOcSyVEtqiOG+kULgcgmW994fTcW/OzYuns2rXrayEE2vq33Xa9siFO1pG+0lc6S99i \n QvpKX+ksfYsJ6St9S0nnctM3JSslUxp9QQHXkmkrram10xF942tTqO3b/LqKI6y95TcjOP6JuwGo \n 3b/xmL/HGQDMC/9srwiN5cmyvu3mWZudmfE5mzOZ/JCLcFDSod22tpZS1nTunQAw+416Md739s74 \n WwAeDH/I6Ffm9Bgfmdh3PmNfGV5uxyzb/MSsIEB7rL4F+5u+OwHgkhEm3j11x/sJoP3nc270HW/f \n NXcXAGafZZaQicEDpNptnf+GNXcPs3bEPO9/rcUtCvb4ZomC1PfWBIBHv/d5AA44aC21Dzc/tOJQ \n a2++39oXG6yrbKEkQEHqnEVyo+9w+65VXwPgNj/l0gqBrwJrPmEPe3v7BWCvJ1ycIUmbJcmFviOj \n JccYGk4BYNJS3++vfbcLk47svk3o97wl2dP3aGummefF9RWjAHgpLAHqPQkrXoOf9RkJwCnhp96b \n 3n/aTiEc4zh/CsnpjfumpF+ZJJn9LpVMEUIIIYQQQgiRDxTTWQh8JwFgXt8pdV0V37U23GEzEZX3 \n LPeOh4FvAxDHmkWhdqGt+ip/tP0wKKvi5psrB1rsSJ2WHbRw5p/vAxB/aJNDc0o0ad5py2cD8GYH \n rjq/nfBVvnb8gwBs06sU/lEnALDxZDv2Nd57RPg6AA9yEx2xdGafo/krZuGcd7b1nHu8xXpNZKd2 \n 7tMsnHHQIQCsHGG9X+vts7JvJO3cb7YYDsDKWAHAobPXECZe7etatsoWPd0TAJa+a9aD7YJ54Dx7 \n nN3H7vVh9zbdrgG192dJNtEmHowTAahpYp/4i7dVR8Dh3/YPQ5ts/IE1NcPrt/n9ENvR1w7yc/ah \n JHPCZoCjuQuAf/jnMX7N4oQkL/KIbNKXU+JmAOb1tB/vlZW25m1vUwtnGtM7sy+AWT+fi78HYGCY \n kH1Rs0hTKydA9SUXATA12TZncsjSKYQQQgghhBAiaxSWpfOJBID4vM2S/f27n+Ef7AzAV857wsYs \n 9LFvJzkVLatYSBSbljW0cL7jK5Mthp8R3wVgYZNZyTE1t7a4TUkwNAFg12CKd/Y6pbQqErPwOCza \n rNtvF+wBwJxTWx77x/Vm+RqeZuq98EhbMS3JmnyZY0cArpluqXjf7MCeTuIm1o/fzT/58eexDuwx \n z6yyuLeaYY27KzdYO6X7szkWqLWcDED8+V7UWok7DoimRHArbXtZ6Bkl0wze18anbSEkHdpvpuny \n xiQANu7fA6iX13Joe7AiS3MtVu4w4xjPu4WzLaQ5Cvh5y2Mq+7ddpJzRM4Hv2OK1Px8DwKnnL7aO \n 7azpdekrALzVr38BWucbMCihV5jSqKvKEuITzjRLZXUS4Z4VvrZpgK7ZiaqjPbPsEC5npa+J/+3x \n +3s94j2/zJzcHeDz/BmAzf558VHpzTfJhzj54xsJALE6UDvcutI8Eg3jGwHCv7vV+u27YJmbvb9z \n s49am1UxO8Kw+Dk+H+yCc2ULYyosMTMzm3kGWxbWZUewAmBqyJ2FM0WWTiGEEEIIIYQQWaOgLJ3x \n eI9r+lva87r/wVQ3Zx3sa4b/qJ1f4m7Z4SyftVmWtHNHGWREAsC5RM6943+8c2aLw68+YTJQX7uz \n bFhgzVNDrK2++FFfkeRDmg5zRLBYqDmtGDvHsxofy1EArPSA1jAi1mU+LVjmngPAzLPN0tkpWixy \n eyzUX2U1M+9IP+3nbTFaOncHIC6yf0LSZG23ZQVel3X+ngB1Vk6AI8J/+9Iv2r/fQQmvuCdD1V+t \n qzL8X/v3lxUslviZ3jZnm8bhNryZvr9hXwC6dX/Se27PjWgZxyzatdGuUhW/uBLGJrbKDQCeY5gD \n zKGBx97yz+7SMGnHy5h11YX24Wy7uVfe45aR/kVy7rqXzZo/2TWnd5jCjQtt1Xpva5psMumyAYD5 \n eZzhSTMfumswAF8JZ/moV7MhbdsYCkvdmSD9DX/1Ncue3TrvArONpVaTWfE0+gaLkazZy4fc6nVa \n jysES+cFrHDLboUftDFVSf7EySn+IDHrDAA2XmLX2pnD6+MZUxrHN8Ir0cp09F/4FrVu5U/etpP8 \n g54FaOkclACwJIQW/U0ejgsBCOFfAFwZ7ZlyY7g+y8KVLwX10hkm2IPWMZMtgPfOX4zkmO/b8s/4 \n AQA79LKo9ZpLbZuqnaGmhWcSvwfy/U9Z+9P3AN9uUTwOgDGhkJLuJJ84YmTclcVNHtYr/AW8svq2 \n zItUQMSfu+KftaZ66l3
" text/plain " : [
" <matplotlib.figure.Figure at 0x7f6cab246898> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" slice = 15 \n " ,
" predicted = model.predict(X_test[:slice]).argmax(-1) \n " ,
" \n " ,
" plt.figure(figsize=(16,8)) \n " ,
" for i in range(slice): \n " ,
" plt.subplot(1, slice, i+1) \n " ,
" plt.imshow(X_test_orig[i], interpolation= ' nearest ' ) \n " ,
" plt.text(0, 0, predicted[i], color= ' black ' , \n " ,
" bbox=dict(facecolor= ' white ' , alpha=1)) \n " ,
" plt.axis( ' off ' ) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Adding more Dense Layers "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 44 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" model = Sequential() \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv, \n " ,
" border_mode= ' valid ' , \n " ,
" input_shape=(1, img_rows, img_cols))) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" \n " ,
" model.add(Flatten()) \n " ,
" model.add(Dense(128)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" \n " ,
" model.add(Dense(nb_classes)) \n " ,
" model.add(Activation( ' softmax ' )) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 45 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Train on 11918 samples, validate on 10000 samples \n " ,
" Epoch 1/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.3044 - acc: 0.9379 - val_loss: 0.1469 - val_acc: 0.9625 \n " ,
" Epoch 2/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.1189 - acc: 0.9640 - val_loss: 0.1058 - val_acc: 0.9655 \n "
]
} ,
{
" data " : {
" text/plain " : [
" <keras.callbacks.History at 0x7f6cf59f7358> "
]
} ,
" execution_count " : 45 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" model.compile(loss= ' categorical_crossentropy ' , \n " ,
" optimizer= ' sgd ' , \n " ,
" metrics=[ ' accuracy ' ]) \n " ,
" \n " ,
" model.fit(X_train, Y_train, batch_size=batch_size, \n " ,
" nb_epoch=nb_epoch,verbose=1, \n " ,
" validation_data=(X_test, Y_test)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 46 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Test score: 0.105762729073 \n " ,
" Test accuracy: 0.9655 \n "
]
}
] ,
" source " : [
" #Evaluating the model on the test data \n " ,
" score, accuracy = model.evaluate(X_test, Y_test, verbose=0) \n " ,
" print( ' Test score: ' , score) \n " ,
" print( ' Test accuracy: ' , accuracy) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Adding Dropout "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 47 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" model = Sequential() \n " ,
" \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv, \n " ,
" border_mode= ' valid ' , \n " ,
" input_shape=(1, img_rows, img_cols))) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" \n " ,
" model.add(Flatten()) \n " ,
" model.add(Dense(128)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(Dropout(0.5)) \n " ,
" model.add(Dense(nb_classes)) \n " ,
" model.add(Activation( ' softmax ' )) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 48 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Train on 11918 samples, validate on 10000 samples \n " ,
" Epoch 1/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.3128 - acc: 0.9097 - val_loss: 0.1438 - val_acc: 0.9624 \n " ,
" Epoch 2/2 \n " ,
" 11918/11918 [==============================] - 0s - loss: 0.1362 - acc: 0.9580 - val_loss: 0.1145 - val_acc: 0.9628 \n "
]
} ,
{
" data " : {
" text/plain " : [
" <keras.callbacks.History at 0x7f6ccb180208> "
]
} ,
" execution_count " : 48 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" model.compile(loss= ' categorical_crossentropy ' , \n " ,
" optimizer= ' sgd ' , \n " ,
" metrics=[ ' accuracy ' ]) \n " ,
" \n " ,
" model.fit(X_train, Y_train, batch_size=batch_size, \n " ,
" nb_epoch=nb_epoch,verbose=1, \n " ,
" validation_data=(X_test, Y_test)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 49 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Test score: 0.11448907243 \n " ,
" Test accuracy: 0.9628 \n "
]
}
] ,
" source " : [
" #Evaluating the model on the test data \n " ,
" score, accuracy = model.evaluate(X_test, Y_test, verbose=0) \n " ,
" print( ' Test score: ' , score) \n " ,
" print( ' Test accuracy: ' , accuracy) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Adding more Convolution Layers "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 50 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" model = Sequential() \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv, \n " ,
" border_mode= ' valid ' , \n " ,
" input_shape=(1, img_rows, img_cols))) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) \n " ,
" model.add(Dropout(0.25)) \n " ,
" \n " ,
" model.add(Flatten()) \n " ,
" model.add(Dense(128)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(Dropout(0.5)) \n " ,
" model.add(Dense(nb_classes)) \n " ,
" model.add(Activation( ' softmax ' )) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 51 ,
" metadata " : {
" collapsed " : false ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Train on 11918 samples, validate on 10000 samples \n " ,
" Epoch 1/2 \n " ,
" 11918/11918 [==============================] - 1s - loss: 0.4707 - acc: 0.8288 - val_loss: 0.2307 - val_acc: 0.9399 \n " ,
" Epoch 2/2 \n " ,
" 11918/11918 [==============================] - 1s - loss: 0.1882 - acc: 0.9383 - val_loss: 0.1195 - val_acc: 0.9621 \n "
]
} ,
{
" data " : {
" text/plain " : [
" <keras.callbacks.History at 0x7f6cc97b8748> "
]
} ,
" execution_count " : 51 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" model.compile(loss= ' categorical_crossentropy ' , \n " ,
" optimizer= ' sgd ' , \n " ,
" metrics=[ ' accuracy ' ]) \n " ,
" \n " ,
" model.fit(X_train, Y_train, batch_size=batch_size, \n " ,
" nb_epoch=nb_epoch,verbose=1, \n " ,
" validation_data=(X_test, Y_test)) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 53 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Test score: 0.11954063682 \n " ,
" Test accuracy: 0.9621 \n "
]
}
] ,
" source " : [
" #Evaluating the model on the test data \n " ,
" score, accuracy = model.evaluate(X_test, Y_test, verbose=0) \n " ,
" print( ' Test score: ' , score) \n " ,
" print( ' Test accuracy: ' , accuracy) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # Exercise \n " ,
" \n " ,
" The above code has been written as a function. \n " ,
" \n " ,
" Change some of the **hyperparameters** and see what happens. "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 54 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " skip "
}
} ,
" outputs " : [ ] ,
" source " : [
" # Function for constructing the convolution neural network \n " ,
" # Feel free to add parameters, if you want \n " ,
" \n " ,
" def build_model(): \n " ,
" \" \" \" \" \" \" \n " ,
" model = Sequential() \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv, \n " ,
" border_mode= ' valid ' , \n " ,
" input_shape=(1, img_rows, img_cols))) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(Convolution2D(nb_filters, nb_conv, nb_conv)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) \n " ,
" model.add(Dropout(0.25)) \n " ,
" \n " ,
" model.add(Flatten()) \n " ,
" model.add(Dense(128)) \n " ,
" model.add(Activation( ' relu ' )) \n " ,
" model.add(Dropout(0.5)) \n " ,
" model.add(Dense(nb_classes)) \n " ,
" model.add(Activation( ' softmax ' )) \n " ,
" \n " ,
" model.compile(loss= ' categorical_crossentropy ' , \n " ,
" optimizer= ' sgd ' , \n " ,
" metrics=[ ' accuracy ' ]) \n " ,
" \n " ,
" model.fit(X_train, Y_train, batch_size=batch_size, \n " ,
" nb_epoch=nb_epoch,verbose=1, \n " ,
" validation_data=(X_test, Y_test)) \n " ,
" \n " ,
" \n " ,
" #Evaluating the model on the test data \n " ,
" score, accuracy = model.evaluate(X_test, Y_test, verbose=0) \n " ,
" print( ' Test score: ' , score) \n " ,
" print( ' Test accuracy: ' , accuracy) "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 55 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" name " : " stdout " ,
" output_type " : " stream " ,
" text " : [
" Train on 11918 samples, validate on 10000 samples \n " ,
" Epoch 1/2 \n " ,
" 11918/11918 [==============================] - 1s - loss: 0.5634 - acc: 0.7860 - val_loss: 0.3574 - val_acc: 0.9363 \n " ,
" Epoch 2/2 \n " ,
" 11918/11918 [==============================] - 1s - loss: 0.2372 - acc: 0.9292 - val_loss: 0.2253 - val_acc: 0.9190 \n " ,
" Test score: 0.225333989978 \n " ,
" Test accuracy: 0.919 \n " ,
" 1 loop, best of 1: 5.45 s per loop \n "
]
}
] ,
" source " : [
" #Timing how long it takes to build the model and test it. \n " ,
" % timeit -n1 -r1 build_model() "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " slide "
}
} ,
" source " : [
" # Batch Normalisation "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1. "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : {
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" source " : [
" ## How to BatchNorm in Keras \n " ,
" \n " ,
" ```python \n " ,
" from keras.layers.normalization import BatchNormalization \n " ,
" \n " ,
" BatchNormalization(epsilon=1e-06, mode=0, \n " ,
" axis=-1, momentum=0.99, \n " ,
" weights=None, beta_init= ' zero ' , \n " ,
" gamma_init= ' one ' ) \n " ,
" ``` "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 58 ,
" metadata " : {
" collapsed " : true ,
" slideshow " : {
" slide_type " : " subslide "
}
} ,
" outputs " : [ ] ,
" source " : [
" # Try to add a new BatchNormalization layer to the Model \n " ,
" # (after the Dropout layer) "
]
}
] ,
" metadata " : {
" celltoolbar " : " Slideshow " ,
" kernelspec " : {
" display_name " : " Python 3 " ,
" language " : " python " ,
" name " : " python3 "
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
" version " : 3
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
" pygments_lexer " : " ipython3 " ,
" version " : " 3.4.3 "
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}