2015-04-10 01:25:59 +08:00
|
|
|
{
|
|
|
|
"metadata": {
|
|
|
|
"name": "",
|
|
|
|
"signature": "sha256:cb8fc4454a69123dcb745c323968d06c15444cee91494edb720893b06e98c249"
|
|
|
|
},
|
|
|
|
"nbformat": 3,
|
|
|
|
"nbformat_minor": 0,
|
|
|
|
"worksheets": [
|
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"# NumPy\n",
|
|
|
|
"\n",
|
|
|
|
"* NumPy Arrays, dtype, and shape\n",
|
|
|
|
"* Common Array Operations\n",
|
|
|
|
"* Reshaping and In-Place Updating\n",
|
|
|
|
"* Combining Arrays\n",
|
|
|
|
"* Creating Fake Data and Adding Noise"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"import numpy as np"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"prompt_number": 1
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## NumPy Arrays, dtypes, and shapes"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"a = np.array([1, 2, 3])\n",
|
|
|
|
"print(a)\n",
|
|
|
|
"print(a.shape)\n",
|
|
|
|
"print(a.dtype)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[1 2 3]\n",
|
|
|
|
"(3,)\n",
|
|
|
|
"int64\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 2
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"b = np.array([[0, 2, 4], [1, 3, 5]])\n",
|
|
|
|
"print(b)\n",
|
|
|
|
"print(b.shape)\n",
|
|
|
|
"print(b.dtype)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[[0 2 4]\n",
|
|
|
|
" [1 3 5]]\n",
|
|
|
|
"(2, 3)\n",
|
|
|
|
"int64\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 3
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"np.zeros(5)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 4,
|
|
|
|
"text": [
|
|
|
|
"array([ 0., 0., 0., 0., 0.])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 4
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"np.ones(shape=(3, 4), dtype=np.int32)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 5,
|
|
|
|
"text": [
|
|
|
|
"array([[1, 1, 1, 1],\n",
|
|
|
|
" [1, 1, 1, 1],\n",
|
|
|
|
" [1, 1, 1, 1]], dtype=int32)"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 5
|
2015-04-10 01:27:00 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Common Array Operations"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"c = b * 0.5\n",
|
|
|
|
"print(c)\n",
|
|
|
|
"print(c.shape)\n",
|
|
|
|
"print(c.dtype)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[[ 0. 1. 2. ]\n",
|
|
|
|
" [ 0.5 1.5 2.5]]\n",
|
|
|
|
"(2, 3)\n",
|
|
|
|
"float64\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 6
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d = a + c\n",
|
|
|
|
"print(d)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[[ 1. 3. 5. ]\n",
|
|
|
|
" [ 1.5 3.5 5.5]]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 7
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d[0]"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 8,
|
|
|
|
"text": [
|
|
|
|
"array([ 1., 3., 5.])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 8
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d[0, 0]"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 9,
|
|
|
|
"text": [
|
|
|
|
"1.0"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 9
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d[:, 0]"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 10,
|
|
|
|
"text": [
|
|
|
|
"array([ 1. , 1.5])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 10
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d.sum()"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 11,
|
|
|
|
"text": [
|
|
|
|
"19.5"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 11
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d.mean()"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 12,
|
|
|
|
"text": [
|
|
|
|
"3.25"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 12
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d.sum(axis=0)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 13,
|
|
|
|
"text": [
|
|
|
|
"array([ 2.5, 6.5, 10.5])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 13
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d.mean(axis=1)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 14,
|
|
|
|
"text": [
|
|
|
|
"array([ 3. , 3.5])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 14
|
2015-04-10 01:28:09 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Reshaping and In-Place Updating"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"e = np.arange(12)\n",
|
|
|
|
"print(e)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[ 0 1 2 3 4 5 6 7 8 9 10 11]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 15
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# f is a view of contents of e\n",
|
|
|
|
"f = e.reshape(3, 4)\n",
|
|
|
|
"print(f)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[[ 0 1 2 3]\n",
|
|
|
|
" [ 4 5 6 7]\n",
|
|
|
|
" [ 8 9 10 11]]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 16
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# Set last five values of e to zero\n",
|
|
|
|
"e[5:] = 0\n",
|
|
|
|
"print(e)"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"output_type": "stream",
|
|
|
|
"stream": "stdout",
|
|
|
|
"text": [
|
|
|
|
"[0 1 2 3 4 0 0 0 0 0 0 0]\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 17
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# f is also updated\n",
|
|
|
|
"f"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 18,
|
|
|
|
"text": [
|
|
|
|
"array([[0, 1, 2, 3],\n",
|
|
|
|
" [4, 0, 0, 0],\n",
|
|
|
|
" [0, 0, 0, 0]])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 18
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# OWNDATA shows f does not own its data\n",
|
|
|
|
"f.flags"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 19,
|
|
|
|
"text": [
|
|
|
|
" C_CONTIGUOUS : True\n",
|
|
|
|
" F_CONTIGUOUS : False\n",
|
|
|
|
" OWNDATA : False\n",
|
|
|
|
" WRITEABLE : True\n",
|
|
|
|
" ALIGNED : True\n",
|
|
|
|
" UPDATEIFCOPY : False"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 19
|
2015-04-10 01:29:27 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Combining Arrays"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"a"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 20,
|
|
|
|
"text": [
|
|
|
|
"array([1, 2, 3])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 20
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"b"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 21,
|
|
|
|
"text": [
|
|
|
|
"array([[0, 2, 4],\n",
|
|
|
|
" [1, 3, 5]])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 21
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"d"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 22,
|
|
|
|
"text": [
|
|
|
|
"array([[ 1. , 3. , 5. ],\n",
|
|
|
|
" [ 1.5, 3.5, 5.5]])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 22
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"np.concatenate([a, a, a])"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 23,
|
|
|
|
"text": [
|
|
|
|
"array([1, 2, 3, 1, 2, 3, 1, 2, 3])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 23
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# Use broadcasting when needed to do this automatically\n",
|
|
|
|
"np.vstack([a, b, d])"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 24,
|
|
|
|
"text": [
|
|
|
|
"array([[ 1. , 2. , 3. ],\n",
|
|
|
|
" [ 0. , 2. , 4. ],\n",
|
|
|
|
" [ 1. , 3. , 5. ],\n",
|
|
|
|
" [ 1. , 3. , 5. ],\n",
|
|
|
|
" [ 1.5, 3.5, 5.5]])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 24
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"# In machine learning, useful to enrich or \n",
|
|
|
|
"# add new/concatenate features with hstack\n",
|
|
|
|
"np.hstack([b, d])"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "pyout",
|
|
|
|
"prompt_number": 25,
|
|
|
|
"text": [
|
|
|
|
"array([[ 0. , 2. , 4. , 1. , 3. , 5. ],\n",
|
|
|
|
" [ 1. , 3. , 5. , 1.5, 3.5, 5.5]])"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 25
|
2015-04-10 01:30:56 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Creating Fake Data and Adding Noise"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [
|
|
|
|
"import pylab as plt\n",
|
|
|
|
"import seaborn\n",
|
|
|
|
"\n",
|
|
|
|
"seaborn.set()\n",
|
|
|
|
"\n",
|
|
|
|
"x = np.random.uniform(1, 100, 1000)\n",
|
|
|
|
"y = np.log(x) + np.random.normal(0, .3, 1000)\n",
|
|
|
|
"\n",
|
|
|
|
"plt.scatter(x, y)\n",
|
|
|
|
"plt.show()"
|
|
|
|
],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data",
|
|
|
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFVCAYAAAA+OJwpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXtcVHX+/58II5OKuZKt1YZMpdhFcYu4bF7aTE1JgrzE\nz0LIdLut2VVt6UIZbphiai0lXkC6oKYYgoiapVaAUV/JaiOtAVfLLmMEhQMj8fvjc87MOXNBIFCU\nz/Px8FEznDnn8znnzLzP5315vb0aGxuRSCQSiURyeulyugcgkUgkEolEGmSJRCKRSDoE0iBLJBKJ\nRNIBkAZZIpFIJJIOgDTIEolEIpF0AKRBlkgkEomkA+DTmg8FBQU9DowHDMBL5eXlmW06KolEIpFI\nOhktXiEHBQVdD0SUl5f/DbgeuKSNxySRSCQSSaejNSvk0cD+oKCgTUBP4LG2HZJEIpFIJJ2P1hjk\nPsDFwM2I1XEuMLAtByWRSCQSSWejNQb5J+C/5eXlJ4CvgoKCrEFBQeeVl5f/5LxhY2Njo5eX1x8e\npEQikUgkZxCtMnytMcjvA7OA1KCgoAuB7oDF7Yi8vPjxx5rWjOusoE8fPzl/Of/TPYzTQmeeO8j5\ny/n7tepzLU7qKi8vzwf+LygoaC/CXX1feXm57FAhkUgkEskfoFVlT+Xl5XPaeiASiUQikXRmpDCI\nRCKRSCQdAGmQJRKJRCLpAEiDLJFIJBJJB0AaZIlEIpFIOgDSIEskEolE0gGQBlkikUgkkg6ANMgS\niUQikXQApEGWSCQSiaQDIA2yRCKRSCQdAGmQJRKJRCLpAEiDLJFIJBJJB0AaZIlEIpFIOgDSIEsk\nEolE0gGQBlkikUgkkg6ANMgSiUQikXQApEGWSCQSiaQDIA2yRCKRSCQdAGmQJRKJRCLpAPic7gFI\nJBKJpPVYrVays3cDEBs7HKPReJpHJGkt0iBLJBLJGYrVauW223IoKroTgJyc1axdGyON8hmKdFlL\nJBLJGUp29m7FGBsAA0VFCfbVsuTMQxpkiUQikUg6ANIgSyQSyRlKbOxwIiJWA/VAPRERGcTGDj9l\nx7darWRkbCMjYxtWq/WUHfdsRcaQJRKJ5AzFaDSydm0M2dmbAYiNPXXxYxm/bnukQZZIJJIzGKPR\nSELC6HY9hrtMbn38GiV+vbndx3I2Iw2yRCKRnKGcipInTythSdsjY8gSiURyBqIaytmzo5g9O4rb\nbstpVhy3pXFfT5nczvHrsLB0bDabjCf/AeQKWSKRSM5AWuMybsu4rzZ+bbPVs3mzN4mJEwDIz88i\nK2u8jCe3ELlClkgkkk5Ca+qWm8rkVuPXBkNXiovvsu931647ZD10K5ArZIlEIjkDiY0dTk7OaoqK\nEgAUQ9n2sd3Tmcnd2fBqbGxsz/03/vhjTXvuv0PTp48fcv5y/p2Rzjx3OHXzb2lSl8NlnQAII94W\npUrO+x0x4rVO7bLu08fPqzWfkwa5HZE/SnL+nXX+nXnu0LHn316Z2dr9zpwZSU2NrU32eybSWoMs\nXdYSiUTSiWivumXtfo1GY6c2yK1FJnVJJBKJRNIBkCtkiURy2pC9fM8s5PVqX6RBlkgkp4XOroXc\nEY1bU2Pq7NfrVNAqgxwUFPQJ8Ivy8pvy8vK72m5IEomkM9CZtZBPpXFrruE/2Zg68/U6VbTYIAcF\nBRkBysvL/972w5FIJJKzD2ejeKqMW0sMvzS4p5/WJHUFA92CgoIKg4KC3gkKCgpr60FJJJKzn9Pd\ny/dU4U5zura21mU7m63ts5Jbo8zliejoUEymJ4FNQPVZe71OJ60xyL8BL5SXl48B7gFeDwoKktna\nEomkRagKUAsWbGbBgs1nZTzSarUya9YrLkbxk08OAJmoDyOwBnCvCdHSZhCtxfkBKTx8FTZbPRkZ\n26iqqiI+vgCzeR4QicmURmbmWJfrpY71lVfyZYOJVtBiYZCgoKCuQJfy8nKr8roEuLW8vPyIm83b\nVXVEIpFIOipWq5WbbnqDXbv8gXGormCoJzY2lezs+wF1tTqMtLQ93HNPpId9xAEwYkQWW7dOafaD\ni+Pzd4ijDMtk0qTzMBi6kpAw0oNBfQebzcbatYf54IOLAbjssg85ePAJj+O1Wq2kp29l6dK9HDz4\nOGBs8VjPMk6ZMMidwGDg/qCgoAuBnsB3njbuqGo1p4KOrNZzKpDz77zz/yNz74jZxy2lTx8/li3L\nVwzpb8DTQChwAxER2Tz77O1UVr6pk7CMjIxxOWcZGduUfQhjvmvXHSxb1vy4rtVqZfToc+jdO4Xg\n4EAKCup54IGbAVizZjWZmWPZtGkv4DjXEyYMJz09jw8+MCIeJODgwfeBtUC8sudMjh3rzo8/1jjF\nqSOBLGBKi8d6NtGnj1+rPtcag7wSWB0UFKQ+Kt1ZXl7+e6uOLpFIJBrOvtIaK7AReBzYSbduj7F8\n+aP06tWr3Rs2OJ/LfftSMZvvw5G0FcuYMWmYzQ8D+nNdWnoQmItjVR8G3KJ5PRWbbS3gmgwGdwDb\ngVFtOp/OQItjv+Xl5SfKy8vjysvLhyv/ittjYBKJpPPR0iSkUxVfbc1xY2OHYzIlA5OA9cA4amtf\nIipqI1ar1S41mZAwGqPR6HaffyTxzflcms0PATs1W+xUjLHruQ4J6e+0N9e1W05OERkZ27DZ6t0c\n3SaTvlqBFAaRSCRnJH9kNf1H3OLNPa7RaGT69CEkJu4EHG5ns/khl3Iixz7/H7CTtLRFFBbe36KV\ntNVqJStrByUl5co7vwNRum1MpiLM5rHK/xdjNutj1ipxcSN5++109u6drrzzGfADkKC8XkBZWQpl\nZUZCQ9MJC1tOSckMZb+LeeihAURHn8mejdOD7PbUjnTmGCLI+Xfm+bd27i1pD5iRsY3Zs6PQJkst\nWHDymKWzQY2IaJlbvDnHVedvtVoZMWKRkp3seXuxz9GIlbRI4DKZUtm1a1qzHzAmTVpHSYkvjjjv\nSvz8vqOmJlGZZ4YuZhwdHUp8fIHHc52enkdiYjfEuu064HXgIuBz4AFAjZPWk5S0lm7dugHiAefi\ni/t02nsfZLcniURyFqCWQrVnbPVUCmAYjUYKC+9nzJhUxWWM4sqNcbP1yVfSnsjO3k1JyV/QZ3NP\no6Yml5iYFCIirrCfS+3+mjrXBkNXzf6siAinamf016SsrIJXX33wpOOUNI00yBKJpEPR3PaAsbHD\nyclZrVvhRUePJSNjm/3vrTHmJ3NnuzuuewMr6NWrF7t2TWvyISM2djhpaYswm8e1aoye8SEi4gqP\n59P5XGv3Gx0dqpnnVmA6wjiPQdRQRwHpgJkBA67WnXfH6lnSEqTLuh3pzC5LkPPvjPNXf9D9/IxE\nRoa2ewzR2YAIF6xwRZtMqRQWTqFXr14un3G4xa2YTPOZPn0IcXEjsVqtjBnzhj3z2JM7Wz2uSGjy\nwmAw6Iy3p2vflLGvqqpSji1W0uHhqxg//lwMhq66bd253DMzxxIXl6u4rKcqe8wgLMzG+vWTm+32\ndrffTZv2UlT0BTk52qzrQ8CrQBIAXbrM4/ffZwK9iIhYzc6dUzt1P+TWuqylQW5HOuMPshY5/+bN\n/2you4U/HpttzfGysnZQWnpQyQpuJDFxItpYrcn0FLt2PeLWoGZl7WDFikN24xsYuJDff/+RQ4dS\naE5c2nm+4eEr7QZ05sxIF4PUnPPjMPQ2cnMtlJT8w2VbTzHs2NjhuqSusLAg4uJuBGjW/eXYbwNi\nRfw5UVF1vPTSTKxWKxER6VgsTyhb3w/8RzcGSEWUStWTlradCRM6b4a1jCFLJGcgp6Putr0eAJob\nm/V0/JaMS5/ENJecHGFQRazTYN/ObA4nO3u3yxiMRiMGQ1dN2Q9UVDwCvNDq+RYXT6O4uAAYR3r6\niyQk/IW4uBtb1S2ptPQAJSVzm7Wtdk4zZtzMjBk3685Ty+4vK/AGMA2IJDc3lW+/zcLb2xeLZRBQ\ngDAbFwFblP8fiXMFbXvocncG
|
|
|
|
"text": [
|
|
|
|
"<matplotlib.figure.Figure at 0x108053c50>"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"prompt_number": 26
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"collapsed": false,
|
|
|
|
"input": [],
|
|
|
|
"language": "python",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"prompt_number": 26
|
2015-04-10 01:25:59 +08:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|