data-science-ipython-notebooks/deep-learning/keras-tutorial/w2v.py

58 lines
2.5 KiB
Python
Raw Normal View History

from gensim.models import word2vec
from os.path import join, exists, split
import os
import numpy as np
def train_word2vec(sentence_matrix, vocabulary_inv,
num_features=300, min_word_count=1, context=10):
"""
Trains, saves, loads Word2Vec model
Returns initial weights for embedding layer.
inputs:
sentence_matrix # int matrix: num_sentences x max_sentence_len
vocabulary_inv # dict {str:int}
num_features # Word vector dimensionality
min_word_count # Minimum word count
context # Context window size
"""
model_dir = 'word2vec_models'
model_name = "{:d}features_{:d}minwords_{:d}context".format(num_features, min_word_count, context)
model_name = join(model_dir, model_name)
if exists(model_name):
embedding_model = word2vec.Word2Vec.load(model_name)
print('Loading existing Word2Vec model \'%s\'' % split(model_name)[-1])
else:
# Set values for various parameters
num_workers = 2 # Number of threads to run in parallel
downsampling = 1e-3 # Downsample setting for frequent words
# Initialize and train the model
print("Training Word2Vec model...")
sentences = [[vocabulary_inv[w] for w in s] for s in sentence_matrix]
embedding_model = word2vec.Word2Vec(sentences, workers=num_workers, \
size=num_features, min_count = min_word_count, \
window = context, sample = downsampling)
# If we don't plan to train the model any further, calling
# init_sims will make the model much more memory-efficient.
embedding_model.init_sims(replace=True)
# Saving the model for later use. You can load it later using Word2Vec.load()
if not exists(model_dir):
os.mkdir(model_dir)
print('Saving Word2Vec model \'%s\'' % split(model_name)[-1])
embedding_model.save(model_name)
# add unknown words
embedding_weights = [np.array([embedding_model[w] if w in embedding_model\
else np.random.uniform(-0.25,0.25,embedding_model.vector_size)\
for w in vocabulary_inv])]
return embedding_weights
if __name__=='__main__':
import data_helpers
print("Loading data...")
x, _, _, vocabulary_inv = data_helpers.load_data()
w = train_word2vec(x, vocabulary_inv)