data-science-ipython-notebooks/deep-learning/keras-tutorial/1.4 (Extra) A Simple Implementation of ANN for MNIST.ipynb

407 lines
14 KiB
Python
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Credits: Forked from [deep-learning-keras-tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggiohttps://github.com/donnemartin/system-design-primer"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# A simple implementation of ANN for MNIST\n",
"\n",
"This code was taken from: https://github.com/mnielsen/neural-networks-and-deep-learning\n",
"\n",
"This accompanies the online text http://neuralnetworksanddeeplearning.com/ . The book is highly recommended. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using Theano backend.\n",
"Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n"
]
}
],
"source": [
"# Import libraries\n",
"import random\n",
"import numpy as np\n",
"import keras\n",
"from keras.datasets import mnist"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Set the full path to mnist.pkl.gz\n",
"# Point this to the data folder inside the repository\n",
"path_to_dataset = \"euroscipy2016_dl-tutorial/data/mnist.pkl.gz\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"!mkdir -p $HOME/.keras/datasets/euroscipy2016_dl-tutorial/data/"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://s3.amazonaws.com/img-datasets/mnist.pkl.gz\n",
"15286272/15296311 [============================>.] - ETA: 0s"
]
}
],
"source": [
"# Load the datasets\n",
"(X_train, y_train), (X_test, y_test) = mnist.load_data(path_to_dataset)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(60000, 28, 28) (60000,)\n",
"(10000, 28, 28) (10000,)\n"
]
}
],
"source": [
"print(X_train.shape, y_train.shape)\n",
"print(X_test.shape, y_test.shape)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\"\"\"\n",
"network.py\n",
"~~~~~~~~~~\n",
"A module to implement the stochastic gradient descent learning\n",
"algorithm for a feedforward neural network. Gradients are calculated\n",
"using backpropagation. Note that I have focused on making the code\n",
"simple, easily readable, and easily modifiable. It is not optimized,\n",
"and omits many desirable features.\n",
"\"\"\"\n",
"\n",
"#### Libraries\n",
"# Standard library\n",
"import random\n",
"\n",
"# Third-party libraries\n",
"import numpy as np\n",
"\n",
"class Network(object):\n",
"\n",
" def __init__(self, sizes):\n",
" \"\"\"The list ``sizes`` contains the number of neurons in the\n",
" respective layers of the network. For example, if the list\n",
" was [2, 3, 1] then it would be a three-layer network, with the\n",
" first layer containing 2 neurons, the second layer 3 neurons,\n",
" and the third layer 1 neuron. The biases and weights for the\n",
" network are initialized randomly, using a Gaussian\n",
" distribution with mean 0, and variance 1. Note that the first\n",
" layer is assumed to be an input layer, and by convention we\n",
" won't set any biases for those neurons, since biases are only\n",
" ever used in computing the outputs from later layers.\"\"\"\n",
" self.num_layers = len(sizes)\n",
" self.sizes = sizes\n",
" self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n",
" self.weights = [np.random.randn(y, x)\n",
" for x, y in zip(sizes[:-1], sizes[1:])]\n",
"\n",
" def feedforward(self, a):\n",
" \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n",
" for b, w in zip(self.biases, self.weights):\n",
" a = sigmoid(np.dot(w, a)+b)\n",
" return a\n",
"\n",
" def SGD(self, training_data, epochs, mini_batch_size, eta,\n",
" test_data=None):\n",
" \"\"\"Train the neural network using mini-batch stochastic\n",
" gradient descent. The ``training_data`` is a list of tuples\n",
" ``(x, y)`` representing the training inputs and the desired\n",
" outputs. The other non-optional parameters are\n",
" self-explanatory. If ``test_data`` is provided then the\n",
" network will be evaluated against the test data after each\n",
" epoch, and partial progress printed out. This is useful for\n",
" tracking progress, but slows things down substantially.\"\"\"\n",
" training_data = list(training_data)\n",
" test_data = list(test_data)\n",
" if test_data: n_test = len(test_data)\n",
" n = len(training_data)\n",
" for j in range(epochs):\n",
" random.shuffle(training_data)\n",
" mini_batches = [\n",
" training_data[k:k+mini_batch_size]\n",
" for k in range(0, n, mini_batch_size)]\n",
" for mini_batch in mini_batches:\n",
" self.update_mini_batch(mini_batch, eta)\n",
" if test_data:\n",
" print( \"Epoch {0}: {1} / {2}\".format(\n",
" j, self.evaluate(test_data), n_test))\n",
" else:\n",
" print( \"Epoch {0} complete\".format(j))\n",
"\n",
" def update_mini_batch(self, mini_batch, eta):\n",
" \"\"\"Update the network's weights and biases by applying\n",
" gradient descent using backpropagation to a single mini batch.\n",
" The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n",
" is the learning rate.\"\"\"\n",
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n",
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n",
" for x, y in mini_batch:\n",
" delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n",
" nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n",
" nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n",
" self.weights = [w-(eta/len(mini_batch))*nw\n",
" for w, nw in zip(self.weights, nabla_w)]\n",
" self.biases = [b-(eta/len(mini_batch))*nb\n",
" for b, nb in zip(self.biases, nabla_b)]\n",
"\n",
" def backprop(self, x, y):\n",
" \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n",
" gradient for the cost function C_x. ``nabla_b`` and\n",
" ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n",
" to ``self.biases`` and ``self.weights``.\"\"\"\n",
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n",
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n",
" # feedforward\n",
" activation = x\n",
" activations = [x] # list to store all the activations, layer by layer\n",
" zs = [] # list to store all the z vectors, layer by layer\n",
" for b, w in zip(self.biases, self.weights):\n",
" z = np.dot(w, activation)+b\n",
" zs.append(z)\n",
" activation = sigmoid(z)\n",
" activations.append(activation)\n",
" # backward pass\n",
" delta = self.cost_derivative(activations[-1], y) * \\\n",
" sigmoid_prime(zs[-1])\n",
" nabla_b[-1] = delta\n",
" nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n",
" # Note that the variable l in the loop below is used a little\n",
" # differently to the notation in Chapter 2 of the book. Here,\n",
" # l = 1 means the last layer of neurons, l = 2 is the\n",
" # second-last layer, and so on. It's a renumbering of the\n",
" # scheme in the book, used here to take advantage of the fact\n",
" # that Python can use negative indices in lists.\n",
" for l in range(2, self.num_layers):\n",
" z = zs[-l]\n",
" sp = sigmoid_prime(z)\n",
" delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n",
" nabla_b[-l] = delta\n",
" nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n",
" return (nabla_b, nabla_w)\n",
"\n",
" def evaluate(self, test_data):\n",
" \"\"\"Return the number of test inputs for which the neural\n",
" network outputs the correct result. Note that the neural\n",
" network's output is assumed to be the index of whichever\n",
" neuron in the final layer has the highest activation.\"\"\"\n",
" test_results = [(np.argmax(self.feedforward(x)), y)\n",
" for (x, y) in test_data]\n",
" return sum(int(x == y) for (x, y) in test_results)\n",
"\n",
" def cost_derivative(self, output_activations, y):\n",
" \"\"\"Return the vector of partial derivatives \\partial C_x /\n",
" \\partial a for the output activations.\"\"\"\n",
" return (output_activations-y)\n",
"\n",
"#### Miscellaneous functions\n",
"def sigmoid(z):\n",
" \"\"\"The sigmoid function.\"\"\"\n",
" return 1.0/(1.0+np.exp(-z))\n",
"\n",
"def sigmoid_prime(z):\n",
" \"\"\"Derivative of the sigmoid function.\"\"\"\n",
" return sigmoid(z)*(1-sigmoid(z))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def vectorized_result(j):\n",
" \"\"\"Return a 10-dimensional unit vector with a 1.0 in the jth\n",
" position and zeroes elsewhere. This is used to convert a digit\n",
" (0...9) into a corresponding desired output from the neural\n",
" network.\"\"\"\n",
" e = np.zeros((10, 1))\n",
" e[j] = 1.0\n",
" return e"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"net = Network([784, 30, 10])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"training_inputs = [np.reshape(x, (784, 1)) for x in X_train.copy()]\n",
"training_results = [vectorized_result(y) for y in y_train.copy()]\n",
"training_data = zip(training_inputs, training_results)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"test_inputs = [np.reshape(x, (784, 1)) for x in X_test.copy()]\n",
"test_data = zip(test_inputs, y_test.copy())"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 0: 1348 / 10000\n",
"Epoch 1: 1939 / 10000\n",
"Epoch 2: 2046 / 10000\n",
"Epoch 3: 1422 / 10000\n",
"Epoch 4: 1365 / 10000\n",
"Epoch 5: 1351 / 10000\n",
"Epoch 6: 1879 / 10000\n",
"Epoch 7: 1806 / 10000\n",
"Epoch 8: 1754 / 10000\n",
"Epoch 9: 1974 / 10000\n"
]
}
],
"source": [
"net.SGD(training_data, 10, 10, 3.0, test_data=test_data)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 0: 3526 / 10000\n",
"Epoch 1: 3062 / 10000\n",
"Epoch 2: 2946 / 10000\n",
"Epoch 3: 2462 / 10000\n",
"Epoch 4: 3617 / 10000\n",
"Epoch 5: 3773 / 10000\n",
"Epoch 6: 3568 / 10000\n",
"Epoch 7: 4459 / 10000\n",
"Epoch 8: 3009 / 10000\n",
"Epoch 9: 2660 / 10000\n"
]
}
],
"source": [
"net = Network([784, 10, 10])\n",
"\n",
"training_inputs = [np.reshape(x, (784, 1)) for x in X_train.copy()]\n",
"training_results = [vectorized_result(y) for y in y_train.copy()]\n",
"training_data = zip(training_inputs, training_results)\n",
"\n",
"test_inputs = [np.reshape(x, (784, 1)) for x in X_test.copy()]\n",
"test_data = zip(test_inputs, y_test.copy())\n",
"\n",
"net.SGD(training_data, 10, 10, 1.0, test_data=test_data)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}