Continually updated IPython Data Science Notebooks geared towards processing big data (AWS, Spark, Hadoop, Linux command line, Python, NumPy, pandas, matplotlib, SciPy, scikit-learn, Kaggle).
* [titanic](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/kaggle/titanic.ipynb): Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning.
* [s3cmd](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3cmd): Interacts with S3 through the command line.
* [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put): Uploads multiple files to S3 in parallel.
* [s3distcp](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#s3distcp): Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster.
* [mrjob](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#mrjob): Supports MapReduce jobs in Python 2.5+ and runs them locally or on Hadoop clusters.
* [redshift](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#redshift): Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP).
* [kinesis](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/aws/aws.ipynb#kinesis): Streams data in real time with the ability to process thousands of data streams per second.
* [spark](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/spark.ipynb): Open-source in-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms.
* [hdfs](http://nbviewer.ipython.org/github/donnemartin/ipython-data-notebooks/blob/master/spark/hdfs.ipynb): Reliably stores very large files across machines in a large cluster.
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793)
* [Building Machine Learning Systems with Python](http://www.amazon.com/Building-Machine-Learning-Systems-Python/dp/1782161406)