2015-04-18 20:26:01 -04:00
{
" cells " : [
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" # scikit-learn-svm "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
2015-05-31 09:46:59 -04:00
" Credits: Forked from [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas \n " ,
" \n " ,
2015-04-18 20:26:01 -04:00
" * Support Vector Machine Classifier \n " ,
" * Support Vector Machine with Kernels Classifier "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 1 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" % matplotlib inline \n " ,
" import numpy as np \n " ,
" import matplotlib.pyplot as plt \n " ,
" import seaborn; \n " ,
" from sklearn.linear_model import LinearRegression \n " ,
" from scipy import stats \n " ,
" import pylab as pl \n " ,
" \n " ,
" seaborn.set() "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Support Vector Machine Classifier "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Support Vector Machines (SVMs) are a powerful supervised learning algorithm used for **classification** or for **regression**. SVMs draw a boundary between clusters of data. SVMs attempt to maximize the margin between sets of points. Many lines can be drawn to separate the points above: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 6 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAeMAAAFVCAYAAADc5IdQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd8G3d65/9BB9g7RVGFokSBRSySrGarN1uy1UnZluS6 \n 2b1k95JNsr/NZu+VzS+X7OVyv73b3OWSbdmsd23JtkiqWpKtZku2ZEsukkiKBaQoUZ29omMw8/tj \n gAFAgkQRMADJ5/168UXgO8DMdwhwPvOU7/NIOI4DQRAEQRCRQxrpCRAEQRDEZIfEmCAIgiAiDIkx \n QRAEQUQYEmOCIAiCiDAkxgRBEAQRYUiMCYIgCCLCyIN5k1ar/TGALQAUAP5Vp9P9IaSzIgiCIIhJ \n RMCWsVarXQ1gmU6nexrAagC5IZ4TQRAEQUwqgrGMNwKo02q1RwEkAPhhaKdEEARBEJOLYMQ4HcB0 \n AC+At4qPA8gP5aQIgiAIYjIRjBh3A2jU6XQMgGatVmvWarVpOp2ue/gLOY7jJBLJE0+SIAiCIMYR \n AQtfMGJ8CcD3Afxcq9VOBRALoMfrbCQSdHUNBXGI6CI9PZ7OI0qYCOcATIzzmAjnANB5RBMT4RwA \n /jwCJeAELp1OdxLAda1W+yV4F/V3dToddZsgCIIgiCAJammTTqf7UagnQhAEQRCTFSr6QRAEQRAR \n hsSYIAiCICIMiTFBEARBRBgSY4IgCIKIMCTGBEEQBBFhSIwJgiAIIsKQGBMEQRBEhCExJgiCIIgI \n Q2JMEARBEBGGxJggCIIgIgyJMUEQBEFEGBJjgiAIgogwJMYEQRAEEWFIjAmCIAgiwpAYEwRBEESE \n CaqfMRGdDA4M4ItfXoKqXgG7hoV6QyyeLl8OiUQS6akRBEEQY0BiPEHo6ejB1b2fYl/tXsggAwC0 \n f9COE9ePYss/7ojw7AiCIIixIDf1BOHLf/4cr9a+IggxAEyxT8FT785HS01zBGdGEARB+ILEeIIQ \n U6OCBCPd0SXGYrSdaI3AjAiCIAh/ITGeIHCjfJIcOHBSTtzJEARBEAFBYjxBMC+2wg77iPGriVeR \n X1EUgRkRBEEQ/kJiPEFY/oPV+O3Tv4MBBmGsQdOI29+5hxlzZkZwZgRBEIQvKJt6ghAXF4cXKnfi \n 5P4z4K7bwWpYTNmRjQ3LNkV6agRBEIQPSIwnEEqlEmveXB/paRAEQRABQm5qgiAIgogwJMYEQRAE \n EWFIjAmCIAgiwpAYEwQxoeA4DkNDg2AYJtJTIQi/oQQugogwDMPg0oGLsF+xgZMC6jUxeGbXCmrw \n EQQXfnke7CEb0u+loT91APoNRqz/yXNQKBSRnhpBjAmJMUFEEJvNhmNvVGHfmT2IRzwAoLO6E0cu \n VmHHv1SQIAfAhV+cxzP/bTGm2qbyA/2AudWMAwPvY+v/2RXZyRGED8hNTRAR5OJvz+P1M68KQgwA \n GVwGtlZtxlenrkRwZuMLlmXBVdtcQuxADTXyPpqN9gePIzQzgvAPEmOCiCDSq4AGmhHjWWwWBs/3 \n R2BG45PBwQFk3s/wum1R31PQfdEo8owIIjBIjAkikrCjb5Jw5KL2l9jYOPSm9Hnddlt9G1O100Se \n EUEEBokxQUQQdglghnnEeLu0HbGr4728g/CGQqHAwFo9rLCO2HZl2VfIK5kbgVkRhP+QGBNEBFn5 \n 7bV4a90fYIRRGOtBD47uPIElW5+O4MzEh+M4mM1mcFxwLT83/NdNeHv3AXyR+AVssKFR3Yj/WPN7 \n LPvfK0M8U4IIPZRNTRARRKlUYtvbFTjxh9PgrtoBGaBYpcKOFydXJvVnv70AW5UJifcTMZQ6BPNG \n G9b/+DnI5f5fopRKJbb9azketj3A4c8/wNSCadg6n7KoifFBUGKs1WqvARhwPL2t0+m+FbopEcTk \n QqFQYM0frQf+KNIziQwXf/0xlv7DQkyzOuK63YBRZ8T7/VXY8r92Bry/7JxpyM6hGDExvghYjLVa \n rRoAdDrdmtBPhyCIyQTLsrBXWV1C7CAGMcg9lYPOH3YiY4r3LGmCmEgEEzMuBRCj1WpPa7Xa81qt \n dkmoJ0UQxORgYKAfU9umeN22uGcRdJcbRJ4RQUSGYMTYAOBnOp3uWQB/DOCAVqulRDCCIAImNjYO \n PSm9Xre1qduQmZcl8owIIjIEEzNuBnALAHQ6XYtWq+0BkAXgobcXp6dPjOUZdB7Rw0Q4B2BinEco \n zuHyZgtsv7BBAc/60ddXXsfedXufeP/+MBE+C2BinMdEOIdgCEaM3wBQAuB7Wq12KoAEAKPWmuvq \n GgpyatFDeno8nUeUMBHOAZgY5xGqc1j212vwh8f7UXauBAuHFqBV2YrPll7Gon96RpS/0UT4LICJ \n cR4T4RyA4G4oghHj/wDwllar/dTx/A2dTjdGHSGCIIjRUavV2PbrctxtbsN7n1chKz8bLywNPIua \n IMYzAYuxTqdjALwShrkQBDGJmTk3BzPn5kR6GgQRESjxiiAIgiAiDIkxQRAEQUQYKodJBMU93V00 \n /KIWMU0a2DV2MCtZrPmzDQGVLyQIgiB46MpJBMw93V08eq0Nr9zeI4yZPjfh7aYD2PmbFyM4M4Ig \n iPEJuamJgGn6RR223H7BY0wDDdZ9uBp1l2siNCuCIIjxC1nGADoetuP6f3wNZY8C9pkslvzR00hI \n SIz0tKIWdYPa6/gcyxx8deE6ip8pFXlGBEEQ45tJL8Y3Tl8D+1cW7Hv8EiSQgAGDQ0cOY9avtJhV \n lBvp6UUljIbxOs6CBacJrhctQRDEZGZSu6ntdju6/792PPt4IyTge8fKIceLut1o/icqUD8azAoW \n ZphHjJ/NOIcFryyOwIwIgiDGN5NajGsuXcOqmyu8bsv8Oh1DQ4Miz2h8sObPN+D3W97BHeUdALxF \n fCbjLKz/hUVqemqEZ0cQBDH+mNRuaqvZBhWn8rpNySjAMN7dsZMdhUKBnb99ETUXr+PKZ1+Di+Ew \n /5VFSMtIi/TUCIIgxiWTWoznr16IT/M+w46W7SO2PSrrQGHyggjManwgkUhQtnoBsDrSMyEIghj/ \n TGo3tUqlguQ7ctQl3PQYv5B1EVn/eVqEZkWMZ9pu3UHNF9dhNo+MqRMEQYzGpLaMAeCZ11ahblYt \n DlS+D2WXApbpVsx9sxCzCimTOhLUXrqBzhOPILFLEbcqAYufXwaJRBLpafnknu4u6v/mBkquzkOB \n eTa+mv05rC/bsebPNvi9D921Rtz/8i6SZqdg4fpF4+K8CYIIDZNejAGgeGUJileWRHoak56Tf3sM \n z7y1BOssfFLd43ce49CW97HjV7shk8kiPLvRYRgG9X96Ha/ecDUzy27Nxr2f3cPn6Z/h6Ze9Jwk6 \n MRgMOPvdk3jmwtNYbqrAQ9lDnHzqCBb8yxJMnZUd0FxsNhtaGpqRmJKI7Onk3SGI8cKkdlMT0UPN \n xetY/rulyLPkCWNZbBZeObYHn771SQRn5psrhy5j242tI8ZnWGbAeFjv8/2f/M0ZvPnh6yg0FQAA \n su3ZeOPqa7j+wy8Dmsenv/kEX6y5iOkbMmBbbsCHLx3H/eZ7Ae2DIIjIQGJMRAVdJ9sxxzpnxHgc \n 4sB9Ft1Z7eY2ExLhvWKbslMx5nstFgtSLyZBhpGW/9Kri6G70eTXHL489Dnm/3QedjXvQC5yscj0 \n FF79eC/qvvcNbDabX/sgCCJykBgTUYGEGT0+Ota2aCAmLw7dkm6v2yzZ1jHfq9frkTKQ4nXbdMt0 \n dLV1+DWHweoB5JpH5jlsr9mGL6ou+bUPgiAiB4kxERWon4lFl6RrxDgDBrYyewRm5D9Ltz+N44s+ \n GDHeHNOCpArvQuskOTkZD2c/8rrtSsZVFDwzz685KNu9W+CJSIS1zeLXPgiCiBwkxkRUsGzHM6je \n dBhGGIUxO+z4/ZI/4JnvrhJtHgzD4LP3L+D833yEsz//EP19fT7fI5VKsfhXK/DW5rfxSdIF1Mnr \n UDmvCg1/p8OiHUt9vlf
" text/plain " : [
" <matplotlib.figure.Figure at 0x105f65490> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" from sklearn.datasets.samples_generator import make_blobs \n " ,
" X, y = make_blobs(n_samples=50, centers=2, \n " ,
" random_state=0, cluster_std=0.60) \n " ,
" \n " ,
" xfit = np.linspace(-1, 3.5) \n " ,
" plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap= ' spring ' ) \n " ,
" \n " ,
" # Draw three lines that couple separate the data \n " ,
" for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: \n " ,
" yfit = m * xfit + b \n " ,
" plt.plot(xfit, yfit, ' -k ' ) \n " ,
" plt.fill_between(xfit, yfit - d, yfit + d, edgecolor= ' none ' , color= ' #AAAAAA ' , alpha=0.4) \n " ,
" \n " ,
" plt.xlim(-1, 3.5); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Fit the model: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 7 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" text/plain " : [
" SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, \n " ,
" kernel= ' linear ' , max_iter=-1, probability=False, random_state=None, \n " ,
" shrinking=True, tol=0.001, verbose=False) "
]
} ,
" execution_count " : 7 ,
" metadata " : { } ,
" output_type " : " execute_result "
}
] ,
" source " : [
" from sklearn.svm import SVC \n " ,
" clf = SVC(kernel= ' linear ' ) \n " ,
" clf.fit(X, y) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Plot the boundary: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 8 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [ ] ,
" source " : [
" def plot_svc_decision_function(clf, ax=None): \n " ,
" \" \" \" Plot the decision function for a 2D SVC \" \" \" \n " ,
" if ax is None: \n " ,
" ax = plt.gca() \n " ,
" x = np.linspace(plt.xlim()[0], plt.xlim()[1], 30) \n " ,
" y = np.linspace(plt.ylim()[0], plt.ylim()[1], 30) \n " ,
" Y, X = np.meshgrid(y, x) \n " ,
" P = np.zeros_like(X) \n " ,
" for i, xi in enumerate(x): \n " ,
" for j, yj in enumerate(y): \n " ,
" P[i, j] = clf.decision_function([xi, yj]) \n " ,
" # plot the margins \n " ,
" ax.contour(X, Y, P, colors= ' k ' , \n " ,
" levels=[-1, 0, 1], alpha=0.5, \n " ,
" linestyles=[ ' -- ' , ' - ' , ' -- ' ]) "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" In the following plot the dashed lines touch a couple of the points known as *support vectors*, which are stored in the ``support_vectors_`` attribute of the classifier: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 9 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAdwAAAFRCAYAAADejRzzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VNeZ+P/PjDSjmVFDnQ4SghG9I0TvvRhsbAO2Yzt2 \n 4jhtk/1usrspu9lNNvltstndZNNjxxUMLmADNsVgTO+IImAAiV6FEEJlRtPu74+xBg33CtSmSHre \n r5dfWOfemfvMRejROfc85+gURUEIIYQQwaUPdwBCCCFEWyAJVwghhAgBSbhCCCFECEjCFUIIIUJA \n Eq4QQggRApJwhRBCiBCIDuabFxeXN3vNUVKShdLSquZ+W3Efuc+hIfc5NOQ+h4bcZ5+0tHidVnuL \n 6+FGR0eFO4Q2Qe5zaMh9Dg25z6Eh9/nBWlzCFUIIIVoiSbhCCCFECEjCFUIIIUJAEq4QQggRApJw \n hRBCiBCQhCuEEEKEgCRcIYQQIgQk4QohhBAh0KiVpqxW6z8BcwED8H82m+31Zo1KCCGEaGUa3MO1 \n Wq0TgDybzTYKmABkNXNMQgghRKvTmB7uNOCY1WpdDSQA/9C8IQkhhBCtT2MSbhrQBZiDr3f7EZDT \n nEEJIYQQrY1OURq2oY/Vav05UGyz2X79xdf5wBSbzXbr/nPdbo8ii1kLIYRoYzR3C2pMD3cH8G3g \n 11artSMQC5RonRiMbZrS0uIpLi5v9vcVgeQ+h4bc59CQ+xwacp990tLiNdsbPGnKZrOtAw5brdZ9 \n +IaTX7bZbM2+760QQgjRmjSqLMhms32/uQMRQgghWjNZ+EIIIYQIAUm4QgghRAhIwhVCCCFCQBKu \n EEIIEQKScIUQQogQkIQrhBBChIAkXCGEECIEJOEKIYQQISAJVwghhAgBSbhCCCFECEjCFUIIIUJA \n Eq4QQggRApJwhRBCiBBo1G5BonU4uGYft1fcwnQ9huoMJ4mLkhj+yMhwhyWEEK2SJNw2atcb27D+ \n SzYzKif7287sOMv24q2MfXFC+AITQohWSoaU2yCPx4Pzb3ZyKq0B7T3t2ShvunG5XGGKTAghWi9J \n uG3QuaIi+p3oq3lsyKlBnCk4HeKIhBCi9ZOE2wbFJ8RzO7ZU81iJ6TYJyQkhjkgIIVo/SbhtUEZG \n e86OLNI8dnLkKTp37RLiiIQQovWThNtGDfi3Ibw+6A3ucheAcsp5o/9b9P63AWGOTAghWieZpdxG \n dc7uQsa69mxasRXXeSfRXQ1MfnImRqMx3KEJIUSrJAm3DTMYDIx7amK4wxBCiDZBhpSFEEKIEJCE \n K4QQQoSADCkLEWEURUGn04U7jIh39fwVCtYfxZxqIXf+KAwGQ7hDEuKBJOEKESH2rthF+fI7mM/F \n 4Ep2Uz3NzZTvzSAqKircoUUURVFY+/3V9F7dk8V3FlFOOR//5hM6/LQrfcb1C3d4QtRJEq4QEWDP \n sp30+ucsrFW9fA3XoKqgiuU3VzLvvx8Nb3ARZsvvNrLwtXm0ox0ACSTw5KknePf779N9cxYWiyXM \n EQqhTZ7hChFmiqJQ8XbZvWT7BQsWen2czbWLV8MUWYTa5PUn29rmFs5mz7KdYQhIiPqRhCtEmDkc \n DpKK1AkEYHTpKAq2Hg1xRJHNUKb9rNaECaXEG+JohKg/SbhChFlMTAyV7ao0j102XCa1e1qII4ps \n 9iyHZvsFwwWShqWEOBoh6k8SrhBhptfrqRhfhQv1tohbhm5l4NghYYgqcnV5PpPdaXsC2ty4+WT8 \n BgZPGhqmqIR4OJk0JUQEmPSv0/jbrTcY+ekIBlT157r+OuuHbqT/L4e0uhIhRVHY/L8b0X/ixXjL \n iKNrNfFPtiP3iVH1en2fMX05/tujLPvrCswnY3DHeagcbWfmj+e3unslWhedoigNfpHVaj0ElH3x \n ZZHNZvuy1nnFxeUNf/OHSEuLp7i4vLnfVtxH7nNo3H+fzx49w7ldZ2mXmcywaSNaZQL5+EcfMe/P \n s0hSkvxtZ01nKfipjVHPjGvQe9W3Zlm+n0ND7rNPWlq85jdlg3u4VqvVBGCz2WQRXiGaWfaAnmQP \n 6BnuMILmdkkJHVdlBCRbgGxHNgffOoTydMMW/WiNv5CI1qsxz3AHAhar1brBarVutlqtuc0dlBCi \n dTqx/Th5N0dqHutU2JHbt2+HOCIhQqcxCbcS+KXNZpsOvAS8bbVaZfKVEOKhUrqmccV4RfNYaWIp \n sbGxIY5IiNBpzKSp08BZAJvNdsZqtZYAHQDVv6KkJAvR0c2/LF1aWnyzv6dQk/scGm3pPqdNz2XZ \n mGVYt1gD2r14qZxSSZcuwSuBakv3OZzkPtetMQn3OWAA8HWr1doRSACuaZ1YWqpdW9gU8lA+NOQ+ \n h0ZbvM+9/30Qr5W/wcyD08nwZnA65jSfj9/OlB/PCtq9aIv3ORzkPvvU9UtHYxLuK8DfrFbrti++ \n fs5ms8nyLkKIeuncswud1nZm/yd7KCu6Q8dhnXlk5OPhDkuIoGtwwrXZbG7g6SDEIoRoI3Q6HSNm \n 5YU7DCFCSiY7CSGEECEgK02JoHE4HHz+m80Y9kah9+qxD6xm9HfGkZCYGO7QhBAi5CThiqBwu92s \n +9JqvvzZsxjw7e7i3enltX2vM3HlDOLi4sIcoRBChJYMKYug2LV8O0s/e9KfbAH06HnmwNPs+uO2 \n B7xSCCFaJ+nhNoPCw2co/KsNU2EMrgQPUdMMjP/ypDa97Jx7v5N41FPjo4nGeES+7YQQbY/85Gsi \n 2+5TuF6qZOm1xf62km0lfFT0IXP+45EwRhZeXmPdlWKeGKkiE0K0PTKk3EQX/1jIxGsTAtpSvCn0 \n er8HVy9oL2HXFqTP68DZmLOq9lu6WxgmxYQhIiGECC9JuE1kKjBpto8qzaNg3dEQRxM5BowbxK4X \n 93HUfMzfVmgs5IPFHzF28YTwBSaEEGEiQ8pN5DG7Ndvt2DEkGjSPtRUzfzyX03NPsfyjleCG9Okd \n WDBmUbjDEkKIsJCE20SVeQ68Ni/6+wYL1mV/wshHG7aZdmvUa3AOvQbnhDuMsPB6vbhcLmJiZAhd \n CCEJt8nG/2gSfz73Cgu2zyPDm4EHDx93+Zh2P0zBZNIebhaNY7fb2fP2Djw3PMT2jSd3Xh56feQ9 \n FamoqODzH39K/M44LBVmSrPvkPx8GkPnj3joaxVFoWD/McpulDFgwkDi4xNCELEQIhQk4TZRXHw8 \n C1Y8zr41u6k6UoEnUWHEl0aS2K5duENrVU7vtXH574uYd3ouZszc1N3kw9feY/xfp5CUmhzu8PwU \n RWHji2t5YfPzRPHF1pTFcOTEEfKNBxk0c2idry06ehbbDwoYc3AUae4B7Oi8g9tP3GXa92fV+/pu \n t5tTR09iibeQ1bNHUz+OEKIZ6RRFCdqbFxeXN/uby/ZPoRFJ99nr9bJp1lqeOrQ0oF1B4fXH3mT2 \n 7xeEKTK1/K2H6PlUN7o7u6uOLZu6gqlvBybPmvvsdDr5fPpGlhQsDjh+Lfoau/7jAOOenfDQa+96 \n YxvOVxwMPzmUuzF3OTLsGD1/3Jseg3s25SO1CpH0/dyayX32SUuL11yEIfLG44S4z+HPDzAxf4Kq \n XYeO5D3tcDqdoQ+qDsUHb2omWwDTubqf5e5ZsZN5BXNV7R3cHXCutT/0uvkbDtLzX7NYdPJRutOd \n AdUDeHrnUi588yyVlZX1jl8IETyScEXEK79ZTqo3VfOYpTIWp7M6xBHVLaZjDOVo/4bvTK77FwPn \n lWri0F5f2njr4bPdb628SZ+K3qr2R07PZ89rOx76eiFE8EnCFRFv8PShbO3wueaxm72LiYtTLyEZ \n LnmPjWFN37Wq9lJdKUyPqvN18X0TuKG/oXmsusvDe/DGG9pJOYYYdFcf+nIhRAhIwhURL7FdO249 \n Wcr16OsB7YeSDpHy5fSgXvvGpeus/9ZHbBu9iW2jPmX9Nz7i2vm6M5jBYCDrv6y8OeQtrumv4cXL \n Z6lb+fCFdUz6xtQ6Xzd
" text/plain " : [
" <matplotlib.figure.Figure at 0x10efed990> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap= ' spring ' ) \n " ,
" plot_svc_decision_function(clf) \n " ,
" plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], \n " ,
" s=200, facecolors= ' none ' ); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" Use IPython ' s ``interact`` functionality to explore how the distribution of points affects the support vectors and the discriminative fit: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 10 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAd8AAAFVCAYAAACuK+XmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8W+d1+P8PuDcJAlziFDWgRWpL1N57WcNaHvFIUsdJ \n HDdJv2nSNm2SNkl/SRNnNnFi19sa1rRlbcnae09oU5siAU5wgADu7w+KEKELWiIFgCB53n7pZeHi \n AvchBN5zx3nO0SiKghBCCCF8J6ClByCEEEK0NxJ8hRBCCB+T4CuEEEL4mARfIYQQwsck+AohhBA+ \n JsFXCCGE8LGg5rzIYDD8EJgBBAN/NBqN73p0VEIIIUQb1uQzX4PBMBoYYjQahwKjgWwPj0kIIYRo \n 05pz5jsROGUwGFYDMcA/eXZIQgghRNvWnOCbAKQD06k7610LdPPkoIQQQoi2rDnBtwg4ZzQabcAF \n g8FQbTAY9EajsejhFRVFUTQazRMPUgghhGhFHhn4mhN8dwPfAX5jMBg6AJGAye3WNRoKC8ubsQnR \n FAkJ0fI5e5l8xt4nn7H3yWfsGwkJ0Y9cp8kJV0ajcR1wzGAwHKTukvOrRqNRujMIIYQQj6lZU42M \n RuMPPD0QIYQQor2QIhtCCCGEj0nwFUIIIXxMgq8QQgjhYxJ8hRBCCB+T4CuEEEL4mARfIYQQwsck \n +AohhBA+JsFXCCGE8DEJvkIIIYSPSfAVQgghfEyCrxBCCOFjEnyFEEIIH5PgK4QQQviYBF8hhBDC \n xyT4CiGEED7WrH6+wvdO7jxBwfJbBBcHUZ1pJfdrfemQleq17SmKwokdxyjaUoAjWKHj7M50ye3q \n te0JIUR7IsG3Fdj55na6/aIz4yzDAVBQWL9pPZV/sdC5v+cDosPhYPVrnzBx9VgmWEcBcOyd42z8 \n +jom/XDaY79PscnMwTf3EXItmFptLZ2e6UqnnC4eH68QQrQ2ctnZz1ksFkLfDKCnpYdzmQYNU/On \n cuWNi17Z5s73tjN/2Rw6Wjs6l/W19KH///bm7IHTj/Ue185e5eTMwyz+7Xzmr5rLM28vhHm17P94 \n j1fGLIQQrYkEXz93cO0+xl8f7/a52GPRWK1Wj2/T8UUtWrSq5d2ru3N71fXHeo/zvz7NvItzCWjw \n FcsrHozt99XU1NR4bKxCCNEaSfD1c0EhQdiwuX3OEWRHo9F4fJsB1sa/FpqaR39lrFYrcYdj3D43 \n 8fIEDny2t9lj8xWbzcbuFTvZ/If1GI+ea+nhCCHaGAm+fm7Q9CFs6rzF7XOlAyoIDg72+Dare1lx \n 4FAtN2MmdEjEI1+vKAoo7p/ToEGxN/Kkn7h05AJbJ61n9DeGsvhn89HOjuLdp9+VM3YhhMdI8PVz \n oaGhhH03kp26Xc5lNmws6baUnj/o7ZVtDv3mCN7t9z5KgwhqxcrS8csZMnfYY425tG+Z2+c2d9zC \n oBlDPDZWTym4dZfNv1rPxv9cx5nXjvPsqcXOS+89q3qw6JNFbP3ZxhYepRCirZBs51Zg4Lw88nOv \n 8eH7SwgqDsaebSfva8OJjnZ/afdJxcTGMvyjMbz/uyWEnwjBEeSgNs/OjG/PJTAw8LHeo8v3urHG \n uJaZV2egoe7S+LGYYyivBhAeHu6VcTfXF/+7lYTfa1lkeppd7KIHPVTrhBBC+M6QFhidEKItkuDb \n SmR2zSLzZ1k+215cvJYpP5ne7Ndn9+5C5KoY3v/rEsLzQ7Bqa0lflMWwQaM8OMond/X8FTJ+k8Lg \n 0sEAlFCCDp3bdUNKg1EUxSv32YUQ7YsEX+E1SR2SniiA+8KlJedZXLrA+bg3vTnCEQYwQLVuZZdq \n CbxCCI+Qe76iXQuscr2MnkkmF7hAJZUuy0/FnUL3fKIvhyaEaMPkzFe0ayEDwjH9n8nlUvMCFrCW \n tRTpTeij9FRn15D9rSz6DR/YgiMVQrQlEnxFuzZkzjCWfbKMr21/iaD7vw6BBFLb3cawJWNJSEkA \n ICEhmsLC8pYcaqtlsVgICgoiNDTUI+93O/8WZzacJFwfQd6sYQQFyW5MtD7yrRXtWmBgINPeeYqP \n /mcZofuDCawNpDq3ht7f6u8MvA+7eeUGp986Qei9EGqSreR+tS8dMr3X5KK1Or39JHf/dJP4M1pq \n g2sxDy6h778NJDkjpVnv53A4WPfPa+i+uguLSp6mnHI+/8N6kn+aQc+RvTw8eiG8S6MoXi14oMjZ \n gvfJWZn31X/GJzYfQ/M9G2PvjqkrGILCptRNhLwRTa9ROS09TL9x6egFbF+pYkTBcJfl7/R+l/Gf \n TXN7Fvyo7/HWP2xi8s/GEUecy/JlnT4hb9tIv5vC5o9kX+EbCQnRj8zMlIQrIR6Toijc+80txt0d \n 65y7rEHDpFuTuP0/+Xj5QLZVufx/RlXgBZh/4mn2vr/LzSseTbPZoQq8ADMvT2ffh7ub9Z5CtBS5 \n 7CzEY7p47gL9jvd1+1z3YwZu3rxBenqGj0fln8Kuh7ldHkEEyiV7s94zqNT97iqMMBSzuhxqverq \n avZ9sAvF6KBWa6PvSwNJTJbMddGyJPgK0QQaxf3VpABHAHY583Wy6mrdLrdjx65vPFB+mepONeCm \n x0V+cD7a/u4LoxTcKuDQi7tZcHx+XeBHYdOSzdz8r3z6zZDsddFy5LKzEI+pS/euHO19zO1zZ/ud \n l7PeBmKf0nIl7Ipq+efpnzPgpcHNes/UFzLZrz/gssyOnfWjNtJ3bH+3rzn6swO8cPwrRFDXEESD \n hkl3J1L63yZqa90fIAjhCxJ8hXhMGo0G/evJ7Ejc6VymoLA1ZRvJ/5gm1a8aGDRzCIf/6TjrMtZR \n RRX3uMdHvZYQ+Sst2vj4Zr1nz5G9qPxDLR+OW8Kq1NUs67qc91/8mCl/n+X2s7fb7UQfjHTen29o \n yoXJ7F+7p1njEMIT5LKzEE3QZ0p/rmVf5YN3Pia0IISaFCs9XswlvbOc9T5szLcnUPFiBes2bCIs \n Jpyx4yY/dmOOxuSM603OuN6PVWPb4XAQVOt+FxdOOFaLtIgULadZwddgMBwFSu8/vGI0Gl/23JCE \n 8G9Zho5k/aJjSw+jVYiKimLUvLEef9/HucoQHBxMWW4FbFY/t6XDFgY+lefxcQnxuJocfA0GQxiA \n 0Wgc4/nhCCGE52R8K5utZ7cy7tY457KrYVcp+YqFmJjYFhyZaO+ac+bbG4gwGAwb77/+R0aj8cAj \n XiPakPLyMgoL79GhQxphYe6nlAjhD7oN6c7VD67wwVsfE5YfSm2cjdhZWsbNnNjSQxPtXHOCrwX4 \n ldFofMtgMHQB1hsMhq5Go7F58wdEq1FZWcm2H26kw7Zk0u+lcTRrH2UzLEz6l2mSbCT8Vsee2XT8 \n TXZLD0MIF00uL2kwGEKAAKPRWH3/8QFgjtFovOVmdZn42IZ8sOgDFi5Z6GxAAHXN53f8eAezfjKr \n BUfW8oqKiggKCiIuTl2BSQjR7jzybKQ5Z74vArnANw0GQwcgBrjT2MpSR9T7nrRe67k9Z7nx1lXC \n LoVii7FhHwfjvjORgIAHM9FuXbtJ5/WdXQIvQBxx1C61c+eV4jbdXaaxz/jUthPc/cNN0k+mYg2q \n 5c7AArr+sAcde8qZVlP5U93h/EvXuHX+Jp36dyEpJamlh+Mx/vQZt2UJCdGPXKc5e8u3gP8zGAz1 \n kx1flEvOrdeZnacJflXhmXsLncsqDlawJH85s96Y51x25eglJpeOc/cWJN9OorS0FJ3OfZWhturK \n qUsEfMfO4oIHnx2bYOm1ZejX64mOjmm5wbUxlZWVnNpzghh9LN36dPfabY4SczE7X99K7925jKkY \n xrH44+yfuIspv55JSEiIV7Yp2qcmF9kwGo02o9H4nNFoHHn/z35vDEz4xu03rzPs3lCXZVFE0efT \n XK4ZrzqXZeRkcTbKTW0/4F5SITEx7S/QXHrHyOiCUarlcy7MZv/fpICDp2z73WZOjD7IkGf6kzI9 \n ng0z13L52EWvbGvXP27
" text/plain " : [
" <matplotlib.figure.Figure at 0x1102e8390> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" from IPython.html.widgets import interact \n " ,
" \n " ,
" def plot_svm(N=100): \n " ,
" X, y = make_blobs(n_samples=200, centers=2, \n " ,
" random_state=0, cluster_std=0.60) \n " ,
" X = X[:N] \n " ,
" y = y[:N] \n " ,
" clf = SVC(kernel= ' linear ' ) \n " ,
" clf.fit(X, y) \n " ,
" plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap= ' spring ' ) \n " ,
" plt.xlim(-1, 4) \n " ,
" plt.ylim(-1, 6) \n " ,
" plot_svc_decision_function(clf, plt.gca()) \n " ,
" plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], \n " ,
" s=200, facecolors= ' none ' ) \n " ,
" \n " ,
" interact(plot_svm, N=[10, 200], kernel= ' linear ' ); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" ## Support Vector Machine with Kernels Classifier \n " ,
" \n " ,
" Kernels are useful when the decision boundary is not linear. A Kernel is some functional transformation of the input data. SVMs have clever tricks to ensure kernel calculations are efficient. In the example below, a linear boundary is not useful in separating the groups of points: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 11 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAeYAAAFRCAYAAAChXA4CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FOe18PHfSlr1LtSFUAEt6m1XEr0bsCm2sQ3ucUuc \n xDdxypvk5tY3t6Xf+CZ5k+sWJzZgGxtsisFgG4Np0qpLSFohkCgChHrfot15/1gQErs0aaVdSc83 \n n3w+1szOzNGw2rMz85znyCRJQhAEQRAEx+Bk7wAEQRAEQbhOJGZBEARBcCAiMQuCIAiCAxGJWRAE \n QRAciEjMgiAIguBARGIWBEEQBAfiYu8AAJqbu21asxUQ4El7e58tdzmhifMxnDgf14lzMZw4H8OJ \n 83Gdrc9FcLCP7GbrJuUVs4uLs71DcCjifAwnzsd14lwMJ87HcOJ8XDee52JSJmZBEARBmKhEYhYE \n QRAEByISsyAIgiA4EJGYBUEQBMGBiMQsCIIgCA5EJGZBEARBcCAiMQuCIAiCAxGJWRAEQRAcyKhm \n /lIoFLnAzzUazZIbln8PeA5ovrroGxqNpnY0xxIEQRCEqWDEiVmhUPwIeALosbI6C3hSo9GUjHT/ \n giAIgjAVjeZWdh3wIGBtvs9s4KcKheIrhULxk1EcQxAEQRCmlBEnZo1Gsx0YuMnqrcA3gKXAfIVC \n cd9IjyMIgiAIU8lYdZd6RaPRdAEoFIo9QCaw52YvDgjwtPkE4cHBPjbd30Qnzsdw4nxcd7tz0dXV \n hclkwt/ff5wisi/x3hhOnI/rxutc2DwxKxQKP6BcoVAkAX2Yr5rfuNU2tm4rFhzsQ3Nzt033OZGJ \n 8zGcOB/X3epcXLlyBbU6n5qaKhISFKxde/84Rzf+xHtjOHE+rrP1ubhVkrdFYpYAFArFo4C3RqN5 \n 7epz5YOADvhMo9Hss8FxBEEYY5Ik0dBQj1qdT0NDPQBBQUHExMTaOTJBsI+2tlZKS0vYsGHtuB1z \n VIlZo9E0AHOv/vfWIcu3Yn7OLAjCBKLVavnoow8xGAxER89ApcohLm4mMtlNe7oLwqQjSRKNjRdQ \n q/OpqzuFJEkkJsYTHj4+X1DH6hmzIAgTkIeHB8uXryQ4OJiwsHB7hyMI48pkMlFbq0GtzufSpYsA \n hIdHoFLlkpKSQmtr77jEIRKzIExBnZ0d6HR6q8+5UlPT7BCRINiPXq+noqKMoiI1HR0dyGQyZs1K \n QKnMISpqOjKZDCen8ZsoUyRmQZhCLl++hFqdj0ZTQ1TUdJKT4+0dkiDYTU9PN8XFRZSWlqDV9uPi \n 4kJGRibZ2TkEBQXZLS6RmAVhkpMkiTNn6lCrCzh37iwAISGhpKSkIUmSnaMThPHX3NxMYWEBVVWV \n GI1GPDw8mTdvARkZWXh5edk7PJGYBWGyMxqN7N37CX19vcTGxqFS5TJjRgwymUwM6hKmDEmSOHu2 \n AbU6n/r6MwAEBgaiUuWSlJSCXC63c4TXicQsCJOci4sLq1bdi6+vHyEhIfYORxDGldFopKamGrU6 \n nytXmgCYPj0alSqX+HjHrDgQiVkQJom2tlb6+vqIippusW7mzFl2iEgQ7Eer1VJWVkpxcSHd3V3I \n ZDJmz05EpcolPDzC3uHdkkjMgjCB3VhvGRgYxLPPvuCQVwGCMB66ujopLFRTUVGGTqfD1dUVpVJF \n VpYSf/8Ae4d3R0RiFoQJSJKkwXrLixcbgev1loIwFZkrDgrQaKoxmUx4e/uQmzuX9PQMPDw87B3e \n XRGJWRAmqCNHDtHW1mZRbykIU4W1ioPg4BCUyhySkpJxdrZtc6TxIhKzIExAMpmMe+5Zjaenl13r \n LQXBHgYGBqiqqkStLqC1tQWAmJhYVKpcYmJiJ/wXVJGYBcGBNTc309XVQXy85eCt6dOj7RCRINhP \n X18fZWUlFBcX0dvbg7OzM8nJqSiVOYSGhto7PJsRiVkQHMy1esvCwgLOnDmNl5c33/hGLC4u4s9V \n mJra29soLCygsrICg8GAu7s7ublzyMrKxsfH197h2Zz4SxcEByFJElVVJ63WW07UZ2WCMBrXKg5O \n napFkiR8fX1ZsGARqanpuLm52Tu8MSMSsyA4CJlMRnl5Kc3NVyZMvaUg2JrJZKKu7hRqdT6NjRcA \n CAsLR6XKRaGYPa7NJOxFJGZBcCDLlt2Dq6t8wtRbCoKt6PV6KivLKSpS097eDkB8/ExUqlymT4+e \n 8AO67oZIzIIwzpqaLtPc3ExKSqrFOjFlpjDV9PT0UFJSRElJ8WCHp/T0TJRK+3Z4sieRmAVhHEiS \n RH39aQoK8jl37iyurq7Ex8+ccBMfCIKttLS0UFhYwMmTFYMdnubOnU9mZrZDdHiyJ5GYBWGMVVSU \n U1BwYrDecsaMGFSqXNzd3e0cmSCML0mSOHfuLGp1PmfOnAbMHZ6ys1WkpKQ5VIcnexKJWRDGWH39 \n adrb2yZlvaUg3Amj0YhGU4NanU9T02UAoqKmD3Z4mgoDuu6GSMyCMMYWLlzMkiXLJmW9pSDcik6n \n o7y8lKIiNV1d5g5PCsVsVKpcIiIi7R2ewxKJWRBsoLHxApcuXUSpzLFYJ0ZYC1NNV1cnRUWFlJeX \n otPpkMvlZGcryc5Wib+HOyASsyCM0I31lk5OTigUs8WVsRVN5y9T/Ac1nifdMbqZMM43seTvVojZ \n zCaZpqbLqNUF1NRUYTKZ8PLyJjd3DunpmWKg410QfxWCMAIVFWWcOHHMot7S29tn2OtaWlowGPSE \n hYVPqTrMoZouNFH1RClPVT82uKz/q37eqnibDW9smrLnZbIwVxycQa3O5+zZBgCCgqaRk5NLYmKy \n +PI1AuKMCcIINDVdpru7m/T0TLKzVUybNm3Y+vrK02j+o4oY9XTcde58nl5K0DdDyLxPaaeI7afk \n D2qerH502DIPPFizbzUlnxWRtWLqnZPJYGBggOrqk6jVBbS0NAPXKw5iY+PEF65REIlZEEYgL28e \n eXnz8Pb2tljX09NN/TdreVJz/QpRVaDixJl8NKHVKJSJ4xmq3XlUWZ/TePrAdI5+dQJWjHNAwqj0 \n 9/dTVlZCUVEhvb09ODk5kZSUgkqVQ2homL3DmxREYhYEK67VW54928DChYst1ltLyNccf+MoD2se \n sFie15LL5r9unXKJ2ehmtLpcQsLoZhrnaISR6uhop7CwgIqKcgwGA25ubqhUuWRnK/H19bN3eJOK \n SMyCMIS1esvExGSCg4PveB8u552QY32iBLdLU29SEeN86DvUhyeew5Yf8z9G0mOW05IKjuXixUbU \n 6nxqazWDHZ7mz19IWlrGpO7wZE8iMQvCVRUVZRw9+pVFveXdJGUAQ8gARow4Y9mqURess1W4E8aS \n by/nb5WbWf3JPcwwzEBC4kjAUZq+18qi2DR7hydYYTKZOH26jl27yqiuPgVAaGjYYIcn0YZ0bInE \n LAhX9fT00N/fP+p6S9Xzeezetof1Z9cNW17hW0nYI1NvUgUXFxcefHUjpV8Uc/xwAUY3E8mPpTE7 \n Jt3eoQk3MBgMgx2e2tra8PJyIy4uHpUql+joGWJA1zgRiVkQrsrKUpKRkTXqesuAwED8/zuEd/5r \n CzklSrwGvDiWeALX5z2Yu2SBjaKdWGQyGZnLsmGZvSMRrOnt7R3s8NTf34ezszNpaRmsWrUUmHqP \n X+xNJGZhyrhWb3n8+Dny8hZbfPu35fOypPnJJO5Ooqa8Gl3vJeaplogJ+gWH09raOtjhaWBgAHd3 \n D+bMmUdmZjbe3t4EB/vQ3Nxt7zCnHJGYhUnPXG9ZhVqdT0tLM15ebkRHzyIyMmpMjyuTyUhMTxrT \n YwjC3ZIkifPnz1FYWEBdnfn5sb+/P0plDikpabi6uto5QkEkZmFSq6go4/DhQ8PqLVetWoqLy83L \n nQRhMjKZTIMVB5cvXwIgMjIKlSqXmTNniQ5PDkQkZmFSkySJgQHDsHpLcXtOmEp0Oh0VFWUUFanp \n 7OxEJpORkKBApcod87t
" text/plain " : [
" <matplotlib.figure.Figure at 0x10fbeddd0> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" from sklearn.datasets.samples_generator import make_circles \n " ,
" X, y = make_circles(100, factor=.1, noise=.1) \n " ,
" \n " ,
" clf = SVC(kernel= ' linear ' ).fit(X, y) \n " ,
" \n " ,
" plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap= ' spring ' ) \n " ,
" plot_svc_decision_function(clf); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" A simple model that could be useful is a **radial basis function**: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 12 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAcwAAAFBCAYAAAD69Z+AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcW2d97/85i6SZ0Uia1TPjmfF43+04sZN4yZ5AQpwm \n ARKS/IB7C71QaAvcttw2oaUb8IPb3hRK0zY/CqG9EBpCSEKcQDayx4TES7yvY489qz3j8azSSGf7 \n /fHo6BxJR/s50iPpeb9e4IyWc56z6Pmc7/f5LpymaWAwGAwGg5EevtQDYDAYDAajHGCCyWAwGAxG \n FjDBZDAYDAYjC5hgMhgMBoORBUwwGQwGg8HIAiaYDAaDwWBkgZjuzdHRaZZzwmAwGIyqorXVx1m9 \n zixMBoPBYDCygAkmg8FgMBhZwASTwWAwGIwsYILJYDAYDEYWMMFkMBgMBiMLmGAyGAwGg5EFTDAZ \n DAaDwcgCJpgMBoPBYGQBE0wGg8FgMLKACSaDwWAwGFnABJPBYDAYjCxggslgMBgMRhYwwWQwGAwG \n IwuYYDIYDAaDkQVMMBkMBoPByAImmAwGg8FgZAETTAaDwWAwsoAJJoPBYDAYWcAEk1G1qKoKVVVL \n PQwGg1EmMMFkVB1EKGVomgRBAAQB4HkAUADI0DStxCNkMBg0IpZ6AAxGsVBVFZomQdNkABw4TgDH \n ceA4gOMAWY5AVRV4PF4AgFk3NS3+bwaDUX0wwWRUPMTtqkLTFGiaAkADwKX9ji6iZnTBZELKYFQn \n TDAZFUu8UGrgOA7phVJ/z1pQdQFlQspgVCdMMBkVh5VQcokqZyNMSBmM6oAJJqNiKLZQZiJbIWUi \n ymCUB0wwGWWPXUKpf0XTkkXOTtIJqapqUFUJAAeedzEhZTAoggkmo2yhzaIsFI4j6S2SFAHPCxAE \n F3PrMhgUwQSTUXZUmlCmg62PMhj0wASTUTY4L5TmKFm6yUVIWTEjBsMemGAyqMdZocyck1lOWAkp \n zydbn8waZTByhwkmg1pIZZ5ItNgAD47jbRDKyhHHXGCFGBiMwmGCyaCOfCrzMHInk1tXkubAcTwE \n wc2ElMEAE0wGRWiaFhPJ+Mo8bKYuJhxHroWqyuA4Hi6XGwCzSBkMJpiMkmMllJUa9VpumK8DK8TA \n qHaYYDJKRm5CabdbNvWMztp75UY6IWXWKKOSYILJKDq0WJSapkJRJGiaAJ5nrWHthgUaMSoNJpiM \n okGLUEZHA0CBoihQFCnuHSKiGnjershchg4rxMAoZ5hgMhyHFqEkrlbF9AoHQXCB40hkrqrKAABV \n VaCq8Z/TxdMQUSakdpK+vq4MRZHB8y5wnMBElFEymGAyHIM+oUycaQXwvAhBIO5YWY5AliMQRTc4 \n jovmgapRMVVALFLj27pwmsUUYAFLdkIidsnDjCCIEATyOlsfZZQCJpgM26FXKPU0FRXphI3kHhqT \n s74tVVWgaYaIGv+d/H2eFxIsUiaidsLWRxmlgAkmwzaIiMjQNKIg9ghl7t+3tigF07ZyL67KcRwE \n If7nQh4MNJNwGoKqKIn7YG5dp2HrowynYYLJKBjdoiR9HBUAxLoqxTiIGJrFigilLkyJKSPxf+dW \n fN14IIg/Vl1E463Q7Ny6TECTKTTNhxWqZ9gFE0xG3iS6Xk3vOLG3tOPIJJTFhAipAJ4X4l7Pxa2r \n qgokKVxCMTW7senA7uNnheoZucIEk5EzqdYoi53w75RQOnUY2bp19QjdxHQXcp7NFqnAqiI5QLr1 \n UUVRoKoyeF5kEbtVCBNMRtbQFcyTKJQ8SEeT9OMhwp7qPZsGmAOJbl1N0xAOz0ZruHqS3LqkGD2L \n 1i02xqlUoaoSeJ6HIBiCySzS6oAJJiMjlSCU5QbHceB5K7du8tpoKreuHqlb/muk9KlPojuXBRpV \n B0wwGSmhRSijowEgm/4uVCjLc+YiKS9WQUZ6oJF5jZRYo/HfN7t1hZiIJp5HfWKnS19pGEx2a7us \n UH1lwgSTkUT+QmnvhGZYlIAxUTlpUeYWJUsLZreueY3UOlpX7zEaXxIwMd2FDnEiVJKgsEL15Q0T \n TEYMWixKa9crAIhl6lIsDVbRuuTcanFVjFLnjpIgF6CU0boGNFx6PbDNiYhd5talHyaYDAeEMr9f \n tD6ZJ9Z7Ja+V6/obXehNuVO7dZVozqgeYKRliNZN7da1j+pUiGzcunr9Y44TmZAWASaYVQxdFmWi \n UPIwCgLISd9h2Eu8W5fkgUYiIfC8AFF0myxSfY00s1uXiKmd9xN7YALihVSSItA0FTU19awQQxFg \n glmFkAT6SHTS40rmZksnlMmVedjjcynQhS9/ty6XIKLlHK0L0FfQwWiszgoxOA8TzCoi3qKUQX5s \n xb8FshHK4o6FkQvZunWzidY1p76UQxEG2qKHNS3zWNj6qH0wwawCrFyvxtpgccdhvUZpt+suP1LV \n m2VkR6JbVycxWtfs1o3vO2rt1qXretBoYeZet5nlj+YHE8wKpthrlKmq6BhCqSJ+wqFDKBnOYke0 \n LkD6lbJOLwZOPEiwQvXpYYJZgeQmlMYaiI0jMI1FTw9hQskwSO/WVZMsUoDU1o0vCagLcbyIVtu9 \n VYzjzXZ9lFwzoFJLMzLBrCBoiXolY6FZKIvvjmZkhy6CgBBz64bDQWiaCre7NpbuYlikcooG3slp \n L3bgVB5muZK4PirLYaiqArfbG/e5SrFGmWBWADQJpYFuCpA1rVL0x2RUCkSkjGhdF3k1z2jdynHr \n 0raean6gMIS0UsQSYIJZ1tAklOSHkhjMw4SSYRfJ93Vubt3sGniXU6cX2iJ2zZTD+csHJphliD1C \n aaeLilSEids6Z8+tla4dV6EkB02UZy1ZJ6ApMjXXoVi5dcl24gvUp+v0Yu45Gp876sSaf77QZ2HS \n dX7shwlmGeGMRVlIGTuzUOo9HZWU3ykMeibwYkCLYNFiKdgxjFTRulYWqeHWNVeZMta+FUUquVuX \n lnvEDJmXKterxASzDKDT9Wr+sQrQ3Vgk2Ie+HzKjnHHOakls4B3bYwq3ro4khU3bKK1bl5aHGhoF \n 3G6YYFKMUcJOhr4eSKtQWn2elh9yrpTyd1+u58x5inteUrl15+ZmAHAQRVcBbl27oNElW9n3MBNM \n Com3KJPXB4s9luRWW6mFstwgk51utZd6NAyaMaeUiKI77vVki1RJ6da1K1qXvqAfOgXcTphgUkTq \n EnZOkH67lS6UBAWqKiMcjsRNWmYRZTASSbwvcnXr2hetS5dA0Sfg9sMEkwKyW6N0ysqM326lC6VR \n pg/Q18b0tVej/JeKcHgWydaAQEmOa/VQzuti6aJ1jXq62bh1hQSLlNb7z1rAy/gSJsEEs4TQF8yT \n KJSl6SDiBKmOj+dFuN3u6CSmQpJC0IUynTXgVCUZhjV0nF97LDqO4yAI8VNvslvXENTEIgx6pxdz \n 6zsaPCLVUAWJCWYJoEkoyY9NgX1C6UTZufy3aS2UOsYxchwXdYMBPM/D7a6Nfd8qby99JRlDRCt5 \n 8qg2nLSUMrl1461QvYE3gUTshkserVsNMMEsIrQJpYE++VeaRWndc9Oq0EIqUlsD6damJNP3nY6U \n ZBSbYl4+q9xRgCwbSNIcVFWNtUBL5dY19xx18h5MZWEylywjJwyhJDd0bkJp741dPNer/blz2bid \n smlOrWmGxZrPjzn12lS8gKZKgC+P5sm0BJTQNNvSck4QLQ7AA1DhcnliLtrEakaZGnjb6xGh5/w4 \n BRNMBylMKJO2VvBYUrkmyeRf/pS6QwrH8Vm3q0rdPFkwfa/061L0wM5DMvECFd/A25jard26espa \n skfETrduJVmXABNMRzALpX5TlzaYJ5VrUrb8TrlhXaYvf6G0MzLTyhq17rJhztsDAA3h8GySNVpt \n 61I0TbjlGtSSawPvfN265Xp+coEJpo1YCWUpx5LZNVmCgdlIqnq22deyTCwYX8xSZqm7bEQioejn \n +OgEltoaLY90g8Kp4EP
" text/plain " : [
" <matplotlib.figure.Figure at 0x1104c6490> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" r = np.exp(-(X[:, 0] ** 2 + X[:, 1] ** 2)) \n " ,
" \n " ,
" from mpl_toolkits import mplot3d \n " ,
" \n " ,
" def plot_3D(elev=30, azim=30): \n " ,
" ax = plt.subplot(projection= ' 3d ' ) \n " ,
" ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap= ' spring ' ) \n " ,
" ax.view_init(elev=elev, azim=azim) \n " ,
" ax.set_xlabel( ' x ' ) \n " ,
" ax.set_ylabel( ' y ' ) \n " ,
" ax.set_zlabel( ' r ' ) \n " ,
" \n " ,
" interact(plot_3D, elev=[-90, 90], azip=(-180, 180)); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" In three dimensions, there is a clear separation between the data. Run the SVM with the rbf kernel: "
]
} ,
{
" cell_type " : " code " ,
" execution_count " : 13 ,
" metadata " : {
" collapsed " : false
} ,
" outputs " : [
{
" data " : {
" image/png " : " iVBORw0KGgoAAAANSUhEUgAAAeYAAAFRCAYAAAChXA4CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz \n AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VOed6PHvjGbUu1DvEtKAhBBCdESRqAIEGDDNduzE \n TrJObnpu2vZkd+8mu9lNNsmNb2LHiYONMZgmRBdVCEQH0UYSQh313qae+8fAiLEGTJE0I+n98Pgx \n c8qcd17OzO+8XSZJEoIgCIIg2Ae5rRMgCIIgCEIfEZgFQRAEwY6IwCwIgiAIdkQEZkEQBEGwIyIw \n C4IgCIIdEYFZEARBEOyIwtYJAGho6BjQMVs+Pq60tHQP5FsOayI/LIn86CPywpLID0siP/oMdF74 \n +3vIHrdvRJaYFQoHWyfBroj8sCTyo4/IC0siPyyJ/OgzlHkxIgOzIAiCIAxXIjALgiAIgh0RgVkQ \n BEEQ7IgIzIIgCIJgR0RgFgRBEAQ7IgKzIAiCINgREZgFQRAEwY6IwCwIgiAIduSFZv5SqVTTgX9X \n q9Xpn9n+HeBNoOHBpq+q1eqiF7mWIAiCIIwGzx2YVSrVD4BXgU4ruycDr6nV6ivP+/6CIAiCMBq9 \n SFV2CbAGsDbfZyrwE5VKdVqlUv3oBa4hCIIgCKPKcwdmtVq9E9A/ZvdW4KtABpCmUqmWP+91BEEQ \n BGE0GazVpX6tVqvbAVQqVQ6QAuQ87mAfH9cBnyDc399jQN9vuBP5YUnkRx+RF5ZEflgS+dFnqPJi \n wAOzSqXyAq6rVKoEoBtTqfm9J50z0MuK+ft70NDQMaDvOZyJ/LAk8qOPyAtLIj8sifzoM9B58aQg \n PxCBWQJQqVSbAHe1Wv3HB+3KxwENcFStVh8cgOsIgiAIwoj3QoFZrVaXAbMe/H3rI9u3YmpnFgRB \n EAThGYgJRgRBEATBjojALAiCIAh2RARmQRAEQbAjIjALgiAIgh0RgVkQBEEQ7IgIzIIgCIJgR0Rg \n FgRBEAQ7IgKzIAiCINgREZgFQRAEwY6IwCwIgiAIdkQEZkEQBEGwIyIwC4IgCIIdEYFZEARBEOyI \n CMyCIAiCYEdEYBYEQRAEOyICsyAIgiDYERGYBUEQBMGOiMAsCIIgCHZEBGZBEARBsCMiMAuCIAiC \n HRGBWRAEQRDsiAjMgiAIgmBHFLZOgCAII19dZS2Xf3sB15vOGJyMGNKMpH9jEQqF+AkShM8S3wpB \n GESNjY3odFqCgoKRyWS2To5N1FXVcevVq3zh9mbztp7TPfy58K+sfW/jqM0XQXgcUZUtCIPg3o27 \n HNyUTeOMKjTT2snNOsCVnIu2TpZNXPntBdbfftlimwsurDiYyZWjl2yUKkGwX6LELAgDrLOzg3tv \n F/Gauq+EOPX8VM6VFqAOvI1qyngbpm7oudxysro9XB/OmdPnYNEQJ0gQ7JwoMQvCADv73hnWqF/q \n t31G43TK/3LXBimyLYOTwep2CQmDk3GIUyMI9k8EZkEYYIpKOUqUVvc53Xce4tTYniENuunutz3f \n O5+EzUk2SJEg2DcRmAVhgOkC9BiwXkrU+GuGODW2l/71hXyw6kPKleWAqaR82ieP+99tJCw63Map \n EwT7I9qYBWGATX1rBvu257CqfKXF9kLPGwStD7VRqmxHoVCw5g8buHrsMmdPncfgZCRx80TGRSXb \n OmmCYJdEYBaEAebj64v3fwew5f98xLQrU3DTu5E//hyOb7kwK32OrZNnEzKZjJQFqbDA1ikRBPsn \n ArMgDIKEtETG70vgzvXbaLruM3tqOkql9XZnQRCER4nALAiDRCaTMT45wdbJEARhmBGdvwRBEATB \n jojALAiCIAh2RARmQRAEQbAjoo1ZEKy4cbqQ+x9W4lijRBukI2BjMMkZKbZOliAIo4AIzILwGRd3 \n niPoR2NIb91g3nbj2E3y//E0s14bncOdBEEYOi9Ula1SqaarVKrjVrZnqVSq8yqVKl+lUr31ItcQ \n hKEkSRLt77SQ0mpZOp7Qnoj2vW70er2NUiYIwmjx3IFZpVL9APgj4PSZ7UrgvzCtGTMP+IpKpQp4 \n kUQKwlApLy9j/I1xVvel3prMneu3hzhFgiCMNi9SYi4B1gCfXeV8PFCiVqvb1Gq1DsgD5r7AdQRh \n yLi4uNDp2GV1X6djJ64eroNyXUmSMBisz68tCMLo8txtzGq1eqdKpYqysssTaHvkdQfg9bzXEYSB \n ptVqOfKrAziclSEzyOidpCXtm/Pw8PQkMDCIq9MvMOv4zH7nXZtSyNK4lVbe8fl0dnZy+vRJ9Ho9 \n jo6OyOUydDo9BoOesWPjGT9++E5O0tHeTt6/nMDlrDMOvQ5oJmiIeDuG+GnWayMEQegzGJ2/2gCP \n R157AC1POsHHxxWFwmFAE+Hv7/H5B40iIj9MDAYDf1nzFzbv3YwzpiUYjaeMfHjhQ1YfXI2Hpwcz \n /msaO17dQdbNLJxwQoeOfap9TPnl5AHLx/z8fJqamti4cQ2Ojo799t++fZsDB3axceNGq/sH0kDf \n GwaDgX0bdvD68deRP6yUK4cT10/QuqeWuJS4Ab3eQBPfFUsiP/oMVV7IJEl67pMflJi3qtXqmY9s \n UwI3gelAF5APZKnV6vuPe5+Gho7nT4QV/v4eNDR0DORbDmsiP/rkbT/FvK/PxBdfi+0GDHz03U9Y \n +qMVAHR1dXHuz3nIKsEYAjO+NAt394H5Ul64UICzswtJSROfeJxWq2Xnzu28/PJGHBwG9sH1ocG4 \n N87sOE3a16cxRhrTb9+WjR+x5H+yBvR6A2kwvyutrS3UVNQQERMxYPfSYBO/HX0GOi/8/T0+2wxs \n NhAlZglApVJtAtzVavUfVSrVd4FDmNqw33tSUBaEoaQ919MvKAM44IDT9b5FJtzc3Fjw9SUDfv3u \n 7m4aGxvJzFxu3tbc2MSlLReQdcCYtACS56cgk8lwdHQkK2s1R48eZsmSzAFPy2DpvdZlNSgDuN51 \n GeLU2F5PTw9Hf3CAiGNhxDREcyfkGnWZTSz52XIUCjFiVejvhe4KtVpdBsx68Petj2zfB+x7oZQJ \n wiAwKoyP36d8/L6Bcvr0STIyFppfX9h+DtnPDGysXYscOWXvlLFr8TZW/D9TFbebmxtarRZJkpDJ \n HvuA/UQGgwG5XP7c5z8ro5eEEWNfNfYjtF6jb7jZke/l8PqO11A8+LmNqYmh+71udih3k/lT+609 \n EGxHPK4Jo0rgyhCKthYR3xtvsb2NNmRzBv/roNPpcHIyjTBsa21F+lcty2r7Ss9RuijeyPkC2375 \n KUt+uBy5XM6UKVO5fPkiqalTATh3Lp+Ghnr0ej06nQ6DwYBOp2PJkkwCA4P6XXPbto+orq5CqVSi \n UChRKhUoFEoyM5fj79+/M9aVK5dob2/HyckJd3cPPD098fDwwNPT66mq1FPfmMbBLQdZVrPMYnuD \n QwPKxU6POWtkqqutY+yxWHNQfsgVV7wOuNP7k16cnZ1tlDrBXonALIwqSbOTOfXNw+h+oyexx9Tr \n uUpRRc6qg6z+0suDfv1H12S+8NdzrK9Zw21uU001bbTRTjtttJG/7SyJr0wkIiKS4OAQrl+/Zj6v \n vLyM8vKyfu/b29tr9ZqhoWGA6aFAr9eh1+vp6el5bBpv375FVVVlv+0bNmwmMjKq3/aKinLkcjke \n Hh64u3vgO8aPsp86s+P/7GT53UyccSbP5wylG8rJfH10lRArbpYxtTnZ6r6I++E0NjYQFhY+xKkS \n 7J0IzMKos/bnazk9v4CPdm9DbpDhnTGGlxauH5SqXqPRSGNjI3V1tYSFhWHR2bLb1LZdSCG3uAWA \n DBkeeOCHn8X7PHre8uVZSJL0oPSrxMHB4Ylpnzcv/ZnSvGTJMnp7e9Boeuno6KC9vZ2Ojg58fHys \n Hn/06GEaGxtM6ZfJ8PDwICAgkJk7Z7Mv9yC6Dh0TViSzLNx6gBrJIidEc8v3NvOa/fvtqwipZPKY \n /sPyBEEEZmFUGjclgXF
" text/plain " : [
" <matplotlib.figure.Figure at 0x110532b10> "
]
} ,
" metadata " : { } ,
" output_type " : " display_data "
}
] ,
" source " : [
" clf = SVC(kernel= ' rbf ' ) \n " ,
" clf.fit(X, y) \n " ,
" \n " ,
" plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap= ' spring ' ) \n " ,
" plot_svc_decision_function(clf) \n " ,
" plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], \n " ,
" s=200, facecolors= ' none ' ); "
]
} ,
{
" cell_type " : " markdown " ,
" metadata " : { } ,
" source " : [
" SVM additional notes: \n " ,
" * When using an SVM you need to choose the right values for parameters such as c and gamma. Model validation can help to determine these optimal values by trial and error. \n " ,
" * SVMs run in O(n^3) performance. LinearSVC is scalable, SVC does not seem to be scalable. For large data sets try transforming the data to a smaller space and use LinearSVC with rbf. "
]
}
] ,
" metadata " : {
" kernelspec " : {
" display_name " : " Python 2 " ,
" language " : " python " ,
" name " : " python2 "
} ,
" language_info " : {
" codemirror_mode " : {
" name " : " ipython " ,
" version " : 2
} ,
" file_extension " : " .py " ,
" mimetype " : " text/x-python " ,
" name " : " python " ,
" nbconvert_exporter " : " python " ,
" pygments_lexer " : " ipython2 " ,
" version " : " 2.7.9 "
}
} ,
" nbformat " : 4 ,
" nbformat_minor " : 0
}