data-science-ipython-notebooks/deep-learning/keras-tutorial/3.3 (Extra) LSTM for Sentence Generation.ipynb

965 lines
25 KiB
Python
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
2017-08-26 20:47:27 +08:00
"Credits: Forked from [deep-learning-keras-tensorflow](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"\n",
"# RNN using LSTM \n",
" \n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"imgs/RNN-rolled.png\"/ width=\"80px\" height=\"80px\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"imgs/RNN-unrolled.png\"/ width=\"400px\" height=\"400px\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"imgs/LSTM3-chain.png\"/ width=\"60%\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_source: http://colah.github.io/posts/2015-08-Understanding-LSTMs_"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from keras.optimizers import SGD\n",
"from keras.preprocessing.text import one_hot, text_to_word_sequence, base_filter\n",
"from keras.utils import np_utils\n",
"from keras.models import Sequential\n",
"from keras.layers.core import Dense, Dropout, Activation\n",
"from keras.layers.embeddings import Embedding\n",
"from keras.layers.recurrent import LSTM, GRU\n",
"from keras.preprocessing import sequence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reading blog post from data directory"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"import pickle\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/valerio/deep-learning-keras-euroscipy2016/data\n"
]
}
],
"source": [
"DATA_DIRECTORY = os.path.join(os.path.abspath(os.path.curdir), 'data')\n",
"print(DATA_DIRECTORY)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"male_posts = []\n",
"female_post = []"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with open(os.path.join(DATA_DIRECTORY,\"male_blog_list.txt\"),\"rb\") as male_file:\n",
" male_posts= pickle.load(male_file)\n",
" \n",
"with open(os.path.join(DATA_DIRECTORY,\"female_blog_list.txt\"),\"rb\") as female_file:\n",
" female_posts = pickle.load(female_file)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"filtered_male_posts = list(filter(lambda p: len(p) > 0, male_posts))\n",
"filtered_female_posts = list(filter(lambda p: len(p) > 0, female_posts))"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# text processing - one hot builds index of the words\n",
"male_one_hot = []\n",
"female_one_hot = []\n",
"n = 30000\n",
"for post in filtered_male_posts:\n",
" try:\n",
" male_one_hot.append(one_hot(post, n, split=\" \", filters=base_filter(), lower=True))\n",
" except:\n",
" continue\n",
"\n",
"for post in filtered_female_posts:\n",
" try:\n",
" female_one_hot.append(one_hot(post,n,split=\" \",filters=base_filter(),lower=True))\n",
" except:\n",
" continue"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# 0 for male, 1 for female\n",
"concatenate_array_rnn = np.concatenate((np.zeros(len(male_one_hot)),\n",
" np.ones(len(female_one_hot))))"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.cross_validation import train_test_split\n",
"\n",
"X_train_rnn, X_test_rnn, y_train_rnn, y_test_rnn = train_test_split(np.concatenate((female_one_hot,male_one_hot)),\n",
" concatenate_array_rnn, \n",
" test_size=0.2)"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X_train_rnn shape: (3873, 100) (3873,)\n",
"X_test_rnn shape: (969, 100) (969,)\n"
]
}
],
"source": [
"maxlen = 100\n",
"X_train_rnn = sequence.pad_sequences(X_train_rnn, maxlen=maxlen)\n",
"X_test_rnn = sequence.pad_sequences(X_test_rnn, maxlen=maxlen)\n",
"print('X_train_rnn shape:', X_train_rnn.shape, y_train_rnn.shape)\n",
"print('X_test_rnn shape:', X_test_rnn.shape, y_test_rnn.shape)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"max_features = 30000\n",
"dimension = 128\n",
"output_dimension = 128\n",
"model = Sequential()\n",
"model.add(Embedding(max_features, dimension))\n",
"model.add(LSTM(output_dimension))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(1))\n",
"model.add(Activation('sigmoid'))"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 3873 samples, validate on 969 samples\n",
"Epoch 1/4\n",
"3873/3873 [==============================] - 3s - loss: 0.2487 - acc: 0.5378 - val_loss: 0.2506 - val_acc: 0.5191\n",
"Epoch 2/4\n",
"3873/3873 [==============================] - 3s - loss: 0.2486 - acc: 0.5401 - val_loss: 0.2508 - val_acc: 0.5191\n",
"Epoch 3/4\n",
"3873/3873 [==============================] - 3s - loss: 0.2484 - acc: 0.5417 - val_loss: 0.2496 - val_acc: 0.5191\n",
"Epoch 4/4\n",
"3873/3873 [==============================] - 3s - loss: 0.2484 - acc: 0.5399 - val_loss: 0.2502 - val_acc: 0.5191\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x7fa1e96ac4e0>"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(X_train_rnn, y_train_rnn, batch_size=32,\n",
" nb_epoch=4, validation_data=(X_test_rnn, y_test_rnn))"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"969/969 [==============================] - 0s \n"
]
}
],
"source": [
"score, acc = model.evaluate(X_test_rnn, y_test_rnn, batch_size=32)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.250189056399 0.519091847357\n"
]
}
],
"source": [
"print(score, acc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using TFIDF Vectorizer as an input instead of one hot encoder"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"vectorizer = TfidfVectorizer(decode_error='ignore', norm='l2', min_df=5)\n",
"tfidf_male = vectorizer.fit_transform(filtered_male_posts)\n",
"tfidf_female = vectorizer.fit_transform(filtered_female_posts)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"flattened_array_tfidf_male = tfidf_male.toarray()\n",
"flattened_array_tfidf_female = tfidf_male.toarray()"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"y_rnn = np.concatenate((np.zeros(len(flattened_array_tfidf_male)),\n",
" np.ones(len(flattened_array_tfidf_female))))"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_train_rnn, X_test_rnn, y_train_rnn, y_test_rnn = train_test_split(np.concatenate((flattened_array_tfidf_male, \n",
" flattened_array_tfidf_female)),\n",
" y_rnn,test_size=0.2)"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X_train_rnn shape: (4152, 100) (4152,)\n",
"X_test_rnn shape: (1038, 100) (1038,)\n"
]
}
],
"source": [
"maxlen = 100\n",
"X_train_rnn = sequence.pad_sequences(X_train_rnn, maxlen=maxlen)\n",
"X_test_rnn = sequence.pad_sequences(X_test_rnn, maxlen=maxlen)\n",
"print('X_train_rnn shape:', X_train_rnn.shape, y_train_rnn.shape)\n",
"print('X_test_rnn shape:', X_test_rnn.shape, y_test_rnn.shape)"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"max_features = 30000\n",
"model = Sequential()\n",
"model.add(Embedding(max_features, dimension))\n",
"model.add(LSTM(output_dimension))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(1))\n",
"model.add(Activation('sigmoid'))"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"model.compile(loss='mean_squared_error',optimizer='sgd', metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 4152 samples, validate on 1038 samples\n",
"Epoch 1/4\n",
"4152/4152 [==============================] - 3s - loss: 0.2502 - acc: 0.4988 - val_loss: 0.2503 - val_acc: 0.4865\n",
"Epoch 2/4\n",
"4152/4152 [==============================] - 3s - loss: 0.2507 - acc: 0.4843 - val_loss: 0.2500 - val_acc: 0.4865\n",
"Epoch 3/4\n",
"4152/4152 [==============================] - 3s - loss: 0.2504 - acc: 0.4952 - val_loss: 0.2501 - val_acc: 0.4865\n",
"Epoch 4/4\n",
"4152/4152 [==============================] - 3s - loss: 0.2506 - acc: 0.4913 - val_loss: 0.2500 - val_acc: 0.5135\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x7fa1f466f278>"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(X_train_rnn, y_train_rnn, \n",
" batch_size=32, nb_epoch=4,\n",
" validation_data=(X_test_rnn, y_test_rnn))"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1038/1038 [==============================] - 0s \n"
]
}
],
"source": [
"score,acc = model.evaluate(X_test_rnn, y_test_rnn, \n",
" batch_size=32)"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.249981284572 0.513487476145\n"
]
}
],
"source": [
"print(score, acc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sentence Generation using LSTM"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# reading all the male text data into one string\n",
"male_post = ' '.join(filtered_male_posts)\n",
"\n",
"#building character set for the male posts\n",
"character_set_male = set(male_post)\n",
"#building two indices - character index and index of character\n",
"char_indices = dict((c, i) for i, c in enumerate(character_set_male))\n",
"indices_char = dict((i, c) for i, c in enumerate(character_set_male))\n",
"\n",
"\n",
"# cut the text in semi-redundant sequences of maxlen characters\n",
"maxlen = 20\n",
"step = 1\n",
"sentences = []\n",
"next_chars = []\n",
"for i in range(0, len(male_post) - maxlen, step):\n",
" sentences.append(male_post[i : i + maxlen])\n",
" next_chars.append(male_post[i + maxlen])\n"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2552476, 20, 152) (2552476, 152)\n",
"(2552476, 20, 152) (2552476, 152)\n"
]
}
],
"source": [
"#Vectorisation of input\n",
"x_male = np.zeros((len(male_post), maxlen, len(character_set_male)), dtype=np.bool)\n",
"y_male = np.zeros((len(male_post), len(character_set_male)), dtype=np.bool)\n",
"\n",
"print(x_male.shape, y_male.shape)\n",
"\n",
"for i, sentence in enumerate(sentences):\n",
" for t, char in enumerate(sentence):\n",
" x_male[i, t, char_indices[char]] = 1\n",
" y_male[i, char_indices[next_chars[i]]] = 1\n",
"\n",
"print(x_male.shape, y_male.shape)"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Build model...\n"
]
}
],
"source": [
"\n",
"# build the model: a single LSTM\n",
"print('Build model...')\n",
"model = Sequential()\n",
"model.add(LSTM(128, input_shape=(maxlen, len(character_set_male))))\n",
"model.add(Dense(len(character_set_male)))\n",
"model.add(Activation('softmax'))\n",
"\n",
"optimizer = RMSprop(lr=0.01)\n",
"model.compile(loss='categorical_crossentropy', optimizer=optimizer)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"auto_text_generating_male_model.compile(loss='mean_squared_error',optimizer='sgd')"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import random, sys"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# helper function to sample an index from a probability array\n",
"def sample(a, diversity=0.75):\n",
" if random.random() > diversity:\n",
" return np.argmax(a)\n",
" while 1:\n",
" i = random.randint(0, len(a)-1)\n",
" if a[i] > random.random():\n",
" return i"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"--------------------------------------------------\n",
"Iteration 1\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 226s - loss: 1.8022 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"p from the lack of \"\n",
"sense of the search \n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"p from the lack of \"\n",
"through that possibl\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"p from the lack of \"\n",
". This is a \" by p\n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"p from the lack of \"\n",
"d he latermal ta we \n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 2\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 228s - loss: 1.7312 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"s Last Dance\" with t\"\n",
" screening on the st\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"s Last Dance\" with t\"\n",
"r song think of the \n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"s Last Dance\" with t\"\n",
". I'm akin computer \n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"s Last Dance\" with t\"\n",
"played that comment \n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 3\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 229s - loss: 1.8693 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \", as maybe someone w\"\n",
"the ssone the so the\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \", as maybe someone w\"\n",
"the sasd nouts and t\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \", as maybe someone w\"\n",
"p hin I had at f¿ to\n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \", as maybe someone w\"\n",
"oge rely bluy leanda\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 4\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 228s - loss: 1.9135 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"o the package :(. Ah\"\n",
" suadedbe teacher th\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"o the package :(. Ah\"\n",
"e a searingly the id\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"o the package :(. Ah\"\n",
"propost the bure so \n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"o the package :(. Ah\"\n",
"ing.Lever fan. By in\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 5\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 229s - loss: 4.5892 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"ot as long as my fri\"\n",
"atde getu th> QQ.“]\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"ot as long as my fri\"\n",
"tQ t[we QaaefYhere Q\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"ot as long as my fri\"\n",
"ew[”*ing”e[ t[w that\n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"ot as long as my fri\"\n",
" me]sQoonQ“]e” ti nw\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 6\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 229s - loss: 6.7174 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"use I'm pretty damn \"\n",
"me g 'o a a a a\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"use I'm pretty damn \"\n",
" a o theT a o a \n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"use I'm pretty damn \"\n",
" n . thot auupe to \n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"use I'm pretty damn \"\n",
" tomalek ho tt Ion i\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 7\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 227s - loss: 6.9138 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"ats all got along be\"\n",
" thrtg t ia thv i c\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"ats all got along be\"\n",
"th wtot.. t to gt? \n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"ats all got along be\"\n",
" ed dthwnn,is a ment\n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"ats all got along be\"\n",
" t incow . wmiyit\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 8\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 228s - loss: 11.0629 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \"oot of my sleeping b\"\n",
"m g te>t e s t anab\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \"oot of my sleeping b\"\n",
" dttoe s s“snge es s\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \"oot of my sleeping b\"\n",
"tut hou wen a onap\n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \"oot of my sleeping b\"\n",
"evtyr tt e io on tok\n",
"\n",
"\n",
"--------------------------------------------------\n",
"Iteration 9\n",
"Epoch 1/1\n",
"2552476/2552476 [==============================] - 228s - loss: 8.7874 \n",
"\n",
"----- diversity: 0.2\n",
"----- Generating with seed: \" Ive always looked \"\n",
"ea e ton ann n ffee\n",
"\n",
"\n",
"----- diversity: 0.4\n",
"----- Generating with seed: \" Ive always looked \"\n",
"o tire n a anV sia a\n",
"\n",
"\n",
"----- diversity: 0.6\n",
"----- Generating with seed: \" Ive always looked \"\n",
"r i jooe Vag o en \n",
"\n",
"\n",
"----- diversity: 0.8\n",
"----- Generating with seed: \" Ive always looked \"\n",
" ao at ge ena oro o\n",
"\n"
]
}
],
"source": [
"# train the model, output generated text after each iteration\n",
"for iteration in range(1,10):\n",
" print()\n",
" print('-' * 50)\n",
" print('Iteration', iteration)\n",
" model.fit(x_male, y_male, batch_size=128, nb_epoch=1)\n",
"\n",
" start_index = random.randint(0, len(male_post) - maxlen - 1)\n",
"\n",
" for diversity in [0.2, 0.4, 0.6, 0.8]:\n",
" print()\n",
" print('----- diversity:', diversity)\n",
"\n",
" generated = ''\n",
" sentence = male_post[start_index : start_index + maxlen]\n",
" generated += sentence\n",
" print('----- Generating with seed: \"' + sentence + '\"')\n",
"\n",
" for iteration in range(400):\n",
" try:\n",
" x = np.zeros((1, maxlen, len(character_set_male)))\n",
" for t, char in enumerate(sentence):\n",
" x[0, t, char_indices[char]] = 1.\n",
"\n",
" preds = model.predict(x, verbose=0)[0]\n",
" next_index = sample(preds, diversity)\n",
" next_char = indices_char[next_index]\n",
"\n",
" generated += next_char\n",
" sentence = sentence[1:] + next_char\n",
" except:\n",
" continue\n",
" \n",
" print(sentence)\n",
" print()"
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}